Decompositions of the Fredholm Operators

By FERENC SZIGETI (Budapest)

We shall use the following notations:

H is a separable Hilbert space with infinite dimension.

L(H) is the Banach algebra of all continuous linear transformations of H, Gl(H) is the group of the inverible elements in L(H).

Ker $A = {\varphi | \varphi \in H, A\varphi = 0}$ is the kernel of $A \in L(H)$ Coker A = H/Im A where Im A is the image of the operator A.

If Im A is a closed subspace in H then Coker A can be identified with $(\operatorname{Im} A)^{\perp}$, the orthogonal complement of Im A.

An operator $A \in L(H)$ is called Fredholm operator if both dim Ker A and dim Coker A are finite. The difference

dim Ker A-dim Coker A

is called the index of the operator A.

The index of A and the space of all Fredholm operators will be denoted by Index A, and \mathcal{F} , respectively.

We mention that

Index $A = \dim H/V - \dim H/A(V)$

where $V \subset H$ is a subspace satisfying the next conditions:

 $\operatorname{Ker} A \cap V = 0$

 $\dim H/V < \infty$ (see [1]).

Let be

 $\mathcal{F}_k = \{A : A \in \mathcal{F}, \text{ Index } A = k\}.$

It was proved that the space $\mathscr{F} \subset L(H)$ is an open set and its components are just the \mathscr{F}_k -s. Furthermore $\mathscr{F}_k \cdot \mathscr{F}_l \subset \mathscr{F}_{k+l}$ which can be expressed as

Index AB = Index A + Index B

(see [1], [2], [3]).

We deal with the question whether $\mathscr{F}_k \cdot \mathscr{F}_l$ and \mathscr{F}_{k+l} can be identical, and we shall prove the following theorem

188 F. Szigeti

Theorem. If $k \ge 0$ or $l \le 0$ then $\mathcal{F}_k \cdot \mathcal{F}_l = \mathcal{F}_{k+l}$. If k < 0 and l > 0 then the equality $\mathcal{F}_k \cdot \mathcal{F}_l = \mathcal{F}_{k+l}$ does not hold. An operator $A \in \mathcal{F}_{k+l}$ can be decomposed in the form $A = A_1 A_2$ where $A_1 \in \mathcal{F}_k$, $A_2 \in \mathcal{F}_l$ if and only if

$$\dim \operatorname{Ker} A \geq l$$

or equivalently

dim Coker
$$A \ge -k$$
.

PROOF. Let us take an orthonormal basis $\{e_i\}_{i=1}^{\infty}$ of the Hilber space H, and define the following operators

$$T_k e_i = \begin{cases} e_{i-k} & \text{if } i > k \\ 0 & \text{if } i \leq k \end{cases}$$

Obviously Index $T_k = k$ and if $k \ge 0$, then $T_k T_{-k} = \mathrm{id}_H$. If $k \ge 0$ or $l \le 0$ then an operator $A \in \mathscr{F}_{k+l}$ can be written as a product:

$$A = A_1 A_2$$
 where $A_1 \in \mathcal{F}_k$, $A_2 \in \mathcal{F}_l$.

The decomposition is the following:

$$A = T_k(T_{-k}A)$$
 or $A = (AT_{-l})T_l$

respectively.

If k < 0 and l > 0 a similar decomposition is not always possible. If dim Ker A < l, then a decomposition is surely impossible. Namely suppose $A = A_1 A_2$ where $A_1 \in \mathcal{F}_k$, $A_2 \in \mathcal{F}_l$. Then dim Ker $A_2 \ge l$ and $l > \dim$ Ker $A = \dim$ Ker $A_1 A_2 \ge \dim$ Ker $A_2 \ge l$ which is a contradiction.

We obtain a necessary condition on the possibility of a decomposition. Clearly the operator T_{k+1} does not satisfy this condition, so in this case the equality $\mathscr{F}_k\mathscr{F}_l = \mathscr{F}_{k+1}$ does not hold.

The condition dim Ker $A \ge l$ is equivalent to dim Coker $A \ge -k$.

Indeed:

$$\dim \operatorname{Ker} A - l = \dim \operatorname{Coker} A + k \ge 0$$

One of these conditions is, sufficient. Suppose then dim Ker $A \ge l$. If $k+l \ge 0$, we choose a subspace $V \subset H$ in the following manner:

V is the orthogonal complement of a subspace of Ker A having dimension dim Ker A-(k+l). If k+l<0 then V is defined to be the orthogonal complement of a subspace of dimension dim Ker A-(k+l), which contains Ker A. Since

$$\dim H/\operatorname{Im} A = \dim H/V$$

so there exists an operator $B \in Gl(H)$ which maps Im A onto V. For this B we have

$$\operatorname{Ker} BA = \operatorname{Ker} A$$
, $\operatorname{Im} BA = V$.

We decompose H as the direct sum of three orthogonal subspaces

$$H = (\operatorname{Ker} A \cap V^{\perp}) \oplus \{ ((\operatorname{Ker} A)^{\perp} \cap V^{\perp}) \oplus (\operatorname{Ker} A \cap V) \} \oplus ((\operatorname{Ker} A)^{\perp} \cap V) =$$
$$= H_1 \oplus H_2 \oplus H_3$$

Choose an orthonormal basis $\{e_i\}_{i=1}^{\infty}$ in H such that $\{e_i\}_{i=1}^{n}$ is a basis for H'_1 , $\{e_i\}_{i=n+1}^{m}$ is a basis for H_2 and finally $\{e_i\}_{i=m+1}^{\infty}$ is a basis for H_3 .

We define the action of a certain operator on this basis:

$$Ce_i = \begin{cases} (BA|_{(\operatorname{Ker} T)^{\perp}})^{-1} e_{i-k-l} & \text{if } e_i \notin \operatorname{Ker} A \\ e_i & \text{if } e_i \in \operatorname{Ker} A \end{cases}$$

The definition is correct, since the map

$$BA|_{(\operatorname{Ker} A)^{\perp}}:(\operatorname{Ker} A)^{\perp} \to V$$

is one to one.

Hence a basis of V is mapped onto a basis of $(\text{Ker } A)^{\perp}$ by the inverse. Furthermore C is identity on Ker A, so $C \in Gl(H)$. Let us compute the action of BAC on the given basis:

First if e_i ∈ Ker A

$$BACe_i = BA(Ce_i) = BAe_i = 0.$$

Secondly if $e_i \notin \text{Ker } A$ then

$$BACe_i = BA(Ce_i) = BA(BA|_{(Ker A)^{\perp}})^{-1}e_{i-k-l} = e_{i-k-l} = T_kT_le_i = T_{k+l-m}T_me_i$$

if $i>m \ge l$, where $m=\dim \operatorname{Ker} A$. Thus we obtain:

$$BAC = T_{k+l-m}T_m$$

On the other hand $T_{m-l}T_{l-m}=id_H$ consequently

$$BAC = T_{k+l-m}T_{m-l}T_{l-m}T_m$$

Here $B, C \in Gl(H)$, so we rewrite this equality:

$$A = (B^{-1}T_{k+l-m}T_{m-l})(T_{l-m}T_mC^{-1})$$

which is the desired decomposition.

References

[1] M. F. ATIYAH, Lectures on K-theory, Cambridge (Mass.), 1965.

(Received Ferbuary 20, 1970.)