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Engel properties of group algebras I

By J. KURDICS (Nýıregyháza)

Abstract. We characterize 3-Engel group algebras, p+1-Engel group algebras of
characteristic p, and show that the group of units of a 3-Engel group algebra is 3-Engel.

Introduction

Let G be a group and F a field. We define the Lie commutator [x, y] of
the elements x and y of the group algebra FG to be xy− yx, and the mul-
tiple Lie commutator [x, y1, y2, . . . , yn] inductively to be [[x, y1, . . . , yn−1],
yn]. We put [x, y, y, . . . , y] = [x, y, n], where the y occur n times, and say
that the algebra FG is n-Engel if [x, y, n] = 0 is an identity in FG. We also
say that FG is bounded Engel if it is n-Engel for some n. Recall Sehgal’s
well-known result [4, Theorem V.6.1.]: FG is bounded Engel if and only
if FG is commutative provided F is of characteristic 0; if and only if G
is nilpotent containing a normal subgroup N such that the commutator
subgroup N ′ and the factorgroup G/N are of p-power orders provided F
is of prime characteristic p.

Let FG be n-Engel of prime characteristic p. In [3] Rips and Shalev
proved that if n < p then FG is commutative, and if n = p then |G′| ≤ p.
Extending these results, Theorem 1 and 2 determines 3 and p + 1-Engel
group algebras, respectively.

It is well-known that 3-Engel Lie algebras (even the not finitely gen-
erated ones) are nilpotent except the characteristic 2 and 5 cases. 3-Engel
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Lie algebras were studied by Traustason in [6], where an example of a 3-
Engel non-nilpotent Lie algebra of characteristic 2 was given. We provide
another example. Let G = A o 〈b〉, a semidirect product, where A is an
infinite direct product of cyclic groups of order 4, and b is of order 2 act-
ing by inversion on A. Then the group algebra of G over the prime field
GF(2) is 3-Engel by Theorem 1, and not Lie nilpotent by Passi, Passman,
Sehgal’s characterization theorem [4].

Concerning the group commutator (x, y) = x−1y−1xy we define the
multiple commutators (x, y1, . . . , yn) and (x, y, n), and the notions of an
n-Engel and a bounded Engel group analogously as above. Group alge-
bras with bounded Engel groups of units were described by Bovdi and
Khripta [1].

In [5] Shalev proved that if A is an n-Engel associative algebra over
a field of prime characteristic, then the group of units U(A) is m-Engel
for some m. Let f(n) be the smallest possible such m. For group algebras
it is easy to show f(2) = 2, and by means of Theorem 1 we also establish
f(3) = 3 in Theorem 3. It would be interesting to assess f(n) for greater
n. Theorem 3 strongly suggests that we can tackle the problem of charac-
terizing group algebras with 3-Engel group of units. This problem will be
solved in the forthcoming second part of this paper.

In what follows, we assume G to be a group, and F to be a field of
prime characteristic p. By γk(G) we mean the kth term of the lower central
series of G with γ1(G) = G, by ζ(G) the center of G and by ζ(FG) the
center of FG. For a subgroup H ⊆ G we denote by I(H) the ideal in FG
generated by all elements of form h − 1 with h ∈ H, and, with H finite,
by Ĥ ∈ FG the sum of all elements of H. For a torsion element a ∈ G we
put 〈̂a〉 = â. We shall use the following commutator identities frequently:

[x, yz] = [x, y]z + y[x, z], [xy, z] = x[y, z] + [x, z]y,

in characteristic
p [x, y, p] = [x, yp], [x, y] = yx((x, y)− 1), (x, y) = 1 + x−1y−1[x, y],

(x, yz) = (x, z)(x, y)z = (x, z)(x, y)(x, y, z),

(xy, z) = (x, z)y(y, z) = (x, z)(x, z, y)(y, z).

Results

Theorem 1. Let F be a field of prime characteristic p, G an arbitrary
group. Then the group algebra FG is 3-Engel if and only if one of the
following conditions holds:

(i) G is abelian;
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(ii) p = 2 and G is nilpotent of class 2 with an elementary abelian
commutator subgroup of order 2 or 4;

(iii) p = 2 and G is nilpotent of class 2 such that its commutator
subgroup is an elementary abelian 2-group of either finite order
greater than 4 or of infinite order, and there exists an abelian
subgroup of index 2 in G;

(iv) p = 3 and G is nilpotent with a commutator subgroup of order 3.

To establish Theorem 1 we need the following lemmas.

Lemma 1. Let FG be a noncommutative (p+1)-Engel group algebra.
Then G/ζ(G) is of exponent p.

Proof. Pick g, h ∈ G such that (g, h) 6= 1. Since FG is (p+1)-Engel,

[g, h, p + 1] = [g, hp, h] = [hpg((g, hp)− 1), h]

= hp
(
g[(g, hp), h] + [g, h]((g, hp)− 1)

)

= hp
(
gh(g, hp)((g, hp, h)−1) + hg((g, h)−1)((g, hp)−1)

)
= 0.

It follows

(g, h)(g, hp)((g, hp, h)− 1) + ((g, h)− 1)((g, hp)− 1)

= (g, h)(g, hp)(g, hp, h)− (g, h)− (g, hp) + 1 = 0.

If (g, h) = (g, h)(g, hp)(g, hp, h) then (g, hp) = 1 as required. If not, then
(g, h) = (g, hp) i.e. (g, h) = (g, h)(g, hp−1)h, and therefore (g, hp−1) = 1,
which, since G/ζ(G) has to be of exponent either p or p2, follows (g, h) = 1,
a contradiction. ¤

Lemma 2. Let p = 2 and let G be a nonabelian group with an abelian
subgroup A of index 2 in G, and assume that G/ζ(G) is of exponent 2m.
Then FG is (2m + 1)-Engel.

Proof. Pick some b ∈ G such that G/A ∼= 〈bA〉. Then every y ∈ FG
can be written uniquely as y = y1 + y2b where y1, y2 ∈ FA. Note that
b2 ∈ ζ(G) ⊂ A, by1 = yb

1b, and by1b = yb
1b

2 ∈ FA for any y1 ∈ FA. Clearly,

y2 = (y1 + y2b)2 = y2
1 + y2y

b
2b

2 + (y1 + yb
1)y2b,

y2y
b
2b

2 and y1 + yb
1 are central in FG, y2 ≡ y2

1 + (y1 + yb
1)y2b(mod ζ(FG)),

and by induction it is easy to show

y2k ≡ y2k

1 + (y1 + yb
1)

2k−1y2b(mod ζ(FG)).
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Now let x = x1+x2b, y = y1+y2b ∈ FG be arbitrary. Evidently, y2m

1 , x2y
b
2+

xb
2y2 ∈ ζ(FG), (y1 + yb

1)
2m

= 0, and we obtain

[x, y, 2m + 1] = [x1 + x2b, y1 + y2b, (y1 + y2b)2
m

] = [(x1 + xb
1)y2b

+(y1 + yb
1)x2b + (x2y

b
2 + xb

2y2)b2, (y1 + yb
1)

2m−1y2b] = 0. ¤

For brevity, we shall say that x ∈ G is a δ-element provided for any
y1, y2 ∈ G, if (x, y1) 6= 1, (x, y2) 6= 1 and 〈(x, y1)〉 ∩ 〈(x, y2)〉 = {1} then
(y1, y2) ∈ 〈(x, y1), (x, y2)〉. Clearly, any element with at most 2 conjugates
is a δ-element.

Lemma 3. Let G be nilpotent of class 2 such that its commutator
subgroup G′ is an elementary abelian 2-group of either finite order greater
than 4 or of infinite order. Then the following statements are equivalent:

(i) there exists an abelian subgroup of index 2 in G;
(ii) any x ∈ G is a δ-element;
(iii) there exists a δ-element x ∈ G with |G : CG(x)| > 2.

Proof. To prove (i)⇒(ii) let A be an abelian subgroup of index 2 in
G. Since the centralizer of any element of A is of index at most 2 in G, any
element of A is a δ-element. Pick b /∈ A, a1b

k, a2b
l ∈ G with a1, a2 ∈ A,

k, l ∈ {0, 1}, and assume (b, a1b
k) = (b, a1) 6= 1, (b, a2b

l) = (b, a2) 6= 1,
(b, a1) 6= (b, a2). Then (a1b

k, a2b
l) = (a1, b

l)(bk, a2) ∈ 〈(b, a1)〉 × 〈(b, a2)〉,
and consequently b is a δ-element. Since there exists a conjugacy class in
G of order greater than 2, (ii)⇒(iii) is even more obvious.

To prove the converse implications, first we make some observations.
Assume that x ∈ G with |G : CG(x)| > 2 is a δ-element, choose some
subgroup D in (x,G) of order 4 and put HD = {h ∈ G | (x, h) ∈ D}. We
shall prove the following:

(I) H ′
D = D;

(II) (x,G) = G′;
(III) CG(x) is abelian;
(IV) (y, CG(x)) ⊆ 〈(y, x)〉 for any y ∈ G, and all elements of CG(x)

are δ-elements.
To prove (I) suppose on the contrary that there exist v, w ∈ HD such

that (v, w) /∈ D, and put (x, v) = c, (x,w) = d. Since x is a δ-element,
either c = 1, d = 1 or c = d.

If 1 6= c = d then there exists w1 ∈ HD such that (x, w1) /∈ 〈c〉 = 〈d〉.
Obviously, we have (v, w1) ∈ D since x is a δ-element. But (x, v) =
c ∈ D, (x,ww1) = c(x, w1) ∈ D and (v, ww1) = (v, w)(v, w1) /∈ D, a
contradiction.
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If one of the commutators c and d, say c, is 1, and the other, i.e. d,
is not 1, then there exists v1 ∈ HD such that (x, v1) /∈ 〈d〉. Since x is a
δ-element, we see (v1, w) ∈ D, but (x, vv1) = (x, v1) ∈ D, (x, w) = d ∈ D
and (vv1, w) /∈ D, a contradiction.

If c = d = 1 then there exist v2, w2 ∈ HD such that (x, v2) 6= 1,
(x,w2) 6= 1 and (x, v2) 6= (x,w2). By the previous case (v2, w2), (v, w2),
(v2, w) ∈ D, but (x, vv2) = (x, v2) ∈ D, (x,ww2) = (x,w2) ∈ D and
(vv2, ww2) /∈ D, a contradiction proving (I).

To prove (II), if v3, w3 ∈ G such that (v3, w3) /∈ (x,G) then choose
some E ⊆ (x,G) with |E| = 4 such that (x, v3), (x,w3) ∈ E. Putting
HE = {h ∈ G | (x, h) ∈ E} we have v3, w3 ∈ HE , contradicting (I).

Since |G′| > 4 and (x,G) = G′, there exist E1, E2, E3 ⊆ (x,G) with
|Ei| = 4 such that E1 ∩E2 ∩E3 = {1}. As CG(x) ⊆ HEi for i = 1, 2, 3, by
(I) we easily infer (III).

While proving the first statement of (IV) we may suppose y /∈ CG(x)
because (IV) in this case gives just (III). Assume that there is z ∈ CG(x)
such that 1 6= (y, z) /∈ 〈(y, x)〉. Then there exists c1 ∈ G′ with c1 /∈
〈(y, z)〉 × 〈(y, x)〉, and putting E = 〈c1〉 × 〈(y, x)〉 we see that y, z ∈ HE

contradicting (I). We proceed to show that all elements of CG(x) are
δ-elements. Suppose on the contrary that there exist z ∈ CG(x) and
y1, y2 ∈ G such that (z, y1) 6= 1, (z, y2) 6= 1, (z, y1) 6= (z, y2) and (y1, y2) /∈
〈(z, y1)〉 × 〈(z, y2)〉. The property (III) implies y1, y2 /∈ CG(x), and by the
first part of (IV) we deduce (x, y1) = (z, y1), (x, y2) = (z, y2), contradicting
that x is a δ-element.

To show (iii)⇒(ii) pick some δ-element u ∈ G with |G : CG(u)| > 2
and some g ∈ G which is not a δ-element. Then there exist h1, h2 ∈ G
such that (g, h1) 6= 1, (g, h2) 6= 1, (g, h1) 6= (g, h2) and yet (h1, h2) /∈
〈(g, h1)〉 × 〈(g, h2)〉. Note that h1h2, gh1, gh2, gh1h2 are not δ-elements.

By (IV) we see g, h1, h2 /∈ CG(u) i.e. (u, h1) 6= 1, (u, h2) 6= 1, (u, g)6=1.
If (u, h1) = (u, h2) then h1h2 ∈ CG(u), but h1h2 is not a δ-element and
therefore (u, h1) 6= (u, h2). Similarly, (u, h1) 6= (u, g), (u, h2) 6= (u, g) and
(u, h1) 6= (u, g)(u, h2). Since u is a δ-element, it follows (g, h1) ∈ 〈(u, g)〉×
〈(u, h1)〉, (g, h2) ∈ 〈(u, g)〉 × 〈(u, h2)〉 and (h1, h2) ∈ 〈(u, h1)〉 × 〈(u, h2)〉.

We may choose h1 and h2 such that (h1, h2) = (u, h1). Indeed, this
is clear in the case (h1, h2) = (u, h2), and if (h1, h2) = (u, h1)(u, h2) then,
putting h′1 = h1h2, we have (u, h′1) = (h′1, h2) = (u, h1)(u, h2).

Now (g, h1) equals either (u, g) or (u, g)(u, h1). Since (u, h1)6=(u, gh2)
and (h1, gh2) equals either (u, g) or (u, g)(u, h1), we see (h1, gh2) /∈
〈(u, h1)〉 × 〈(u, gh2)〉, contradicting that u is a δ-element.
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There remained to prove (ii)⇒(i). Assume that (ii) holds, pick some
u ∈ G with |G : CG(u)| > 2, choose some subgroup D in (u,G) of order 4
and put HD = {h ∈ G | (u, h) ∈ D}.

We show that there exists an element in G with 2 conjugates. Suppose
the contrary. Pick b1, b2 ∈ HD with D = 〈(u, b1)〉 × 〈(u, b2)〉, now b1 and
b2 are δ-elements with more than 2 conjugates and (b1, b2) ∈ D. By (IV)
we can see easily that this is impossible. Indeed, if (b1, b2) = 1 then
(u, b2) ∈ 〈(u, b1)〉. If (b1, b2) = (u, b1) then (b1, ub2) = 1 and (u, b2) =
(u, ub2) ∈ 〈(u, b1)〉. If (b1, b2) = (u, b2) then (b2, ub1) = 1 and (u, b1) =
(u, ub1) ∈ 〈(u, b2)〉. Since ub1 is not central in G, |G : CG(ub1)| > 2, and
hence if (b1, b2) = (u, b1)(u, b2) then (ub1, ub2) = 1 and (u, b2) = (u, ub2) ∈
〈(u, ub1)〉. In each of the four cases we arrived at a contradiction, thus
there exists an element in G with 2 conjugates.

Pick some a ∈ G with |G : CG(a)| = 2. First we show that each
element of CG(a) = A has at most only 2 conjugates in G. Let G/A ∼=
〈u1A〉. If there exists b ∈ A satisfying |G : CG(b)| > 2 then, by (III),
CG(b) ⊆ A because a ∈ CG(b). By (IV) for any a1 ∈ A we have (u1a1, a) ∈
〈(u1a1, b)〉 and hence, first putting a1 = 1, we obtain (u1, a) = (u1, b) and
(u1, a) = (u1a1, b). Consequently, (u2

1a1, b) = (a1, b) = 1 and CG(b) = A,
a contradiction proving the desired property.

This readily follows u /∈ A and hence G/A ∼= 〈uA〉. Finally, to show
that A is abelian suppose on the contrary that there exist a2, a3 ∈ A such
that (a2, a3) = c3 6= 1. Then A′ = 〈c3〉 and (u, a2), (u, a3) ∈ 〈c3〉. Since
(u,G) = (u,A) = G′ by (II), there exist a4, a5 ∈ A such that (u, a4) = c4 6=
1, (u, a5) = c5 6= 1, c4 6= c5 and c3 /∈ 〈c4〉 × 〈c5〉. Observing a4, a5 ∈ ζ(A)
we conclude that (u, a2a4) equals either c4 or c3c4, (u, a3a5) equals either
c5 or c3c5, and (a2a4, a3a5) = c3 /∈ 〈(u, a2a4)〉 × 〈(u, a3a5)〉, contradicting
that u is a δ-element. Thus A is an abelian subgroup of index 2 in G. ¤

Now we can complete the

Proof of Theorem 1. The result of Rips and Shalev mentioned in the
introduction settles the case p = 3 and assures that if a noncommutative
group algebra is 3-Engel then it is of characteristic 2 or 3. Hence to
complete the proof consider the case p = 2.

Evidently, (ii) of Theorem 1 follows that FG is even Lie nilpotent of
class at most 3. If (iii) of Theorem 1 holds then the central factor of G is
of exponent 2 and Lemma 2 forces FG to be 3-Engel.

Now suppose that FG is a noncommutative 3-Engel group algebra
of characteristic 2. By Lemma 1 G/ζ(G) is a group of exponent 2 and
therefore elementary abelian, which follows that G is nilpotent of class 2
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and its commutator subgroup is an elementary abelian 2-group. There
remained to prove that if G′ is either of finite order greater than 4, or of
infinite order, then there is an abelian subgroup of index 2 in G. Suppose
the contrary. Then by Lemma 3 there exists an element in G which is
not a δ-element, i.e. there exists g, h1, h2 ∈ G such that (g, h1) = c1 6= 1,
(g, h2) = c2 6= 1, c1 6= c2 and (h1, h2) = c3 /∈ 〈c1〉 × 〈c2〉. Since FG is
3-Engel, we have

[g, h1 + h2, 3] = [g, h1, h1, h1 + h2] + [g, h2, h2, h1 + h2] + [g, h1, h2, h2]

+[g, h2, h1, h1] + [g, h1, h2, h1] + [g, h2, h1, h2]

= [g, h1, h2, h1] + [g, h2, h1, h2] = gh2
1h2ĉ1ĉ2c3ĉ3 + gh1h

2
2ĉ2ĉ1c3ĉ3

= gh1h2(h1 + h2)ĉ1ĉ2ĉ3 = 0.

It follows h1ĉ1ĉ2ĉ3 = h2ĉ1ĉ2ĉ3, which is possible only if h1 ∈ h2ζ(G),
contradicting that h1 and h2 do not commute. ¤

Theorem 2. Let F be a field of prime characteristic p > 2, G a non-
abelian group. Then the group algebra FG is (p + 1)-Engel if and only if
G is nilpotent with a commutator subgroup of order p.

Proof. The “if” claim is clear. To establish the “only if” claim
assume that FG is (p+1)-Engel. Then, by Sehgal’s theorem, G is nilpotent.
Recall that for a normal subgroup N in G, FG/N ∼= FG/I(N).

First we shall prove that for any e, f ∈ G such that (e, f) = c is of
order p and central in 〈e, f〉 we have

(e + f)p = ep + fp + ĉ

p−1∑

k=1

1
p

(
p

k

)
ekfp−k.

Put (e+f)p = ep +fp +
∑p−1

k=1 wk, where wk is the sum of all the products
with e ocurring k times as a factor. Clearly, there are

(
p
k

)
summands in wk,

and we can write wk = ekfp−k
∑(p

k)
i=1 cli . On the other hand, by Jacobson’s

formula [2, p.187] we have wk = sk(e, f), where ksk(e, f) is the coefficient
of λk−1 in [e, λe+f, p−1], considered as a polynomial of the indeterminate
λ, and hence, applying the identity [x, y] = yx((x, y) − 1) several times,
wk = αekfp−k ĉ for some α ∈ GF(p). By the first expression of wk, the
coefficient α cannot be else than 1

p

(
p
k

)
.

Suppose that G is nilpotent of class 2 and |G′| > p. By Lemma 1
G′ is of exponent p, and we may assume |G′| = p2. It is easy to see that
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there exist a ∈ G with more than p conjugates and b1, b2 ∈ G such that
(a, b1) = c1 6= 1, (a, b2) = c2 /∈ 〈c1〉 and (b1, b2) = c1. Indeed, this is clear if
(b1, b2) is in 〈c1〉 or 〈c2〉. If (b1, b2) = ck

1cl
2 with 1 ≤ k, l ≤ p−1 then, putting

b′1 = bk
1bl

2, b′2 = bk′
2 , where kk′ ≡ 1(mod p), we see (a, b′1) = ck

1cl
2 6= 1,

(a, b′2) = ck′
2 /∈ 〈(a, b′1)〉 and (b′1, b

′
2) = (b1, b2)kk′ = (a, b′1).

If p = 3 then

[a, b1 + b2, 4] = [a, b1 + b2, (b1 + b2)3]

= [a, b1 + b2, b
3
1 + b3

2 + ĉ1(b1b
2
2 + b2

1b2)]

= ĉ1[a, b2, b1b
2
2 + b2

1b2] = ĉ1

(
b1[a, b2, b

2
2] + b2

1[a, b2, b2]
)

= ĉ1b1(b1 − b2)[a, b2, b2] = ĉ1ĉ2(b1 − b2)ab1b
2
2 = 0,

which implies b1 ∈ b2ζ(G), a contradiction. If p > 3 then put z =
(c2 − 1)

p−1
2 and compute

[a, zb1 + b2, p + 1] = [a, zb1 + b2, (zb1 + b2)p]

= [a, zb1 + b2, b
p
2 + ĉ1(zb1b

p−1
2 +

p− 1
2

z2b2
1b

p−2
2 )]

= ĉ1[a, b2, zb1b
p−1
2 +

p− 1
2

z2b2
1b

p−2
2 ]

= ĉ1zb1[a, b2, b
p−1
2 ] = 0.

Since 0 = [x, bp
2] = [x, b2]b

p−1
2 + b2[x, bp−1

2 ], it follows

ĉ1z[a, b2, b2] = ĉ1(c2 − 1)
p+3
2 b2

2a = 0,

which is impossible since p+3
2 < p. Thus if G is nilpotent of class 2 then

|G′| = p.
Now suppose that G is nilpotent of class greater than 2. Since G/γ4(G)

is of class 3, we may assume that G is of class 3. Since G/γ3(G) is of class 2,
the facts proved above follow that G′/γ3(G) is of order p. By Lemma 1
γ3(G) is of exponent p and, since in a group nilpotent of class 3 we have
(x, yp) = (x, y)p(x, y, y)p p−1

2 and p is odd, G′ is of exponent p. Combining
these observations we may suppose that G is of class 3 with an elementary
abelian commutator subgroup of order p2.

If G is not a 2-Engel group then there exist g, h ∈ G such that (g, h) =
d /∈ γ3(G), 1 6= (d, h) = c ∈ γ3(G) and (d, g) = 1. Indeed, if (g, h, g) = cr
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with 1 ≤ r ≤ p− 1 then (h−rg, h) = (g, h) = d, (d, h−rg) = c−rcr = 1. We
have

[g, d + h, p + 1] = [g, d + h, (d + h)p]

=

[
g, d + h, 1 + hp + ĉ

p−1∑

k=1

1
p

(
p

k

)
dkhp−k

]
= ĉ

p−1∑

k=1

1
p

(
p

k

)
dk[g, h, hp−k]

= ĉ

p−1∑

k=1

1
p

(
p

k

)
dkhp−k+1g(dp−k − 1)(d− 1) = 0.

Multiplying by (d− 1)p−3 it follows

ĉd̂gh

p−1∑

k=1

1
p

(
p

k

)
(p− k)hp−k = ĉd̂gh

p−1∑

k=1

(
p− 1

k

)
hp−k

= ĉd̂gh

p−1∑

k=1

(−1)khp−k = ĉd̂gh2

p−2∑

k=0

(−1)khk = 0,

which is possible only if h ∈ 〈c, d〉, contradicting (d, h) 6= 1.
Now we prove the following auxiliary assertion: if H is a 2-Engel

group nilpotent of class 3 then |H ′/γ3(H)| 6= 3. Indeed, suppose the
contrary. Then there exist u, v ∈ H such that H ′/γ3(H) = 〈(u, v)γ3(H)〉,
and, furthermore, there exists w ∈ H with (u, v, w) 6= 1. Clearly, either
(u,w) or (v, w), say (u,w), is noncentral in H, and hence (u,w) = (u, v)kz,
where k ∈ {1, 2} and z is central in H. However, since in the 2-Engel group
H the exponent of γ3(H) is 3, it follows 1 = (u,w, w) = ((u, v)kz, w) =
(u, v, w)k 6= 1, a contradiction.

Finally, in the case when G is 2-Engel and of class 3 we have p = 3 and
|G′/γ3(G)| = 3, which is impossible by the previous auxiliary assertion.

¤
Theorem 3. If FG is a 3-Engel group algebra then the group of units

U(FG) is 3-Engel.

Proof. The implication is evident if (i), (ii) or (iv) of Theorem 1
holds. Suppose that p = 2 and G is nilpotent of class 2 such that its
commutator subgroup is an elementary abelian 2-group of order either
finite greater than 4, or of infinite order, and there exists an abelian
subgroup A of index 2 in G. We shall use the notations and observa-
tions made in the proof of Lemma 2. For arbitrary noncommuting units
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x = x1 + x2b, y = y1 + y2b ∈ U(FG) we shall prove (x, y, 3) = 1 by means
of the identity (x, y, y2) = (x, y, y)2(x, y, 3). Obviously,

t = x1 + xb
1, w = y1 + yb

1, z = x2y
b
2 + xb

2y2 ∈ ζ(FG), t2 = w2 = z2 = 0,

I = tFG + wFG + zFG is an ideal, I2 = twFG + tzFG + wzFG, I4 = {0},
and

[x, y] = ty2b + wx2b + zb2 ∈ I, y2 ≡ wy2b(mod ζ(FG)),

[x, y, y] = [x, y2] = w(ty2b + zb2) ∈ I2.

Moreover,

(x, y) = 1 + x−1y−1[x, y] ∈ 1 + I, (x, y)2 ∈ 1 + I2,

(x, y2) = 1 + x−1y−2[x, y2] ∈ 1 + I2,

which, since (x, y2) = (x, y)2(x, y, y), immediately follows (x, y, y) ∈ 1+I2,
and hence (x, y, y)2=1, (x, y, 3)=(x, y, y2). Recalling [x, y, 3]=[x, y, y2]=0
we conclude

[(x, y), y2] = [x−1y−1[x, y], y2] = x−1y−1[x, y, y2] + [x−1, y2]y−1[x, y]

= y−1x−1[x, y2]x−1[x, y] = y−1x−1w(ty2b + zb2)x−1(ty2b + wx2b + zb2)

= y−1x−1twz[x−1, y2b]b2 = y−1x−1x−1twz[x, y2b]x−1b2 = 0. ¤

Acknowledgement. The author wishes to thank Prof. A. A. Bovdi for
raising the problem and for his continuous encouragement.

References

[1] A. A. Bovdi and I. I. Khripta, Engel properties of the multiplicative group of a
group algebra, Math. USSR Sbornik 72 (1992), 121–133.

[2] N. Jacobson, Lie Algebras, Interscience, New York, 1962.
[3] E. Rips and A. Shalev, The Baer condition for group algebras, J. Algebra 140

(1991), 83–100.
[4] S. K. Sehgal, Topics in Group Rings, Marcel Dekker, New York, 1978.
[5] A. Shalev, On associative algebras satisfying the Engel condition, Israel J. Math.

67 (1989), 287–289.
[6] G. Traustason, Engel Lie algebras, Quart. J. Math. Oxford 44 (1993), 355–384.

DEPARTMENT OF MATHEMATICS
BESSENYEI COLLEGE
NYÍREGYHÁZA, HUNGARY

E-mail: kurdics@ny1.bgytf.hu

(Received March 26, 1996)


