Structure theorems for objects

By RICHARD WIEGANDT (Budapest)

§ 1. Introduction

From a categorical point of view the notion of structure theorems can be defined
as follows. Let us distinguish a class .# of objects. These objects will be regarded
as simple objects. Let us choose a decomposition procedure 2 (e.g. decomposition
in product, coproduct, subdirect embeddings, direct or inverse limit, etc.). A theo-
rem is a structure theorem, if it asserts that a class of objects can be decomposed
into objects of .# by the procedure 2. Because of the ring-theoretical analogy,
a structure theorem may be called of Wedderburn—Artinian type if either 1) the
objects of .# are simple in the usual algebraic sense and 2 means decomposi-
tion in product, or 2) the theorem establishes a categorically dual representation to
that of 1).

It is the purpose of this paper to develop a structure theorem of Wedderburn—
Artinian type in a category satisfying some rather natural additional requirements,
and to give its interpretations in several concrete categories. After the preliminary
section § 2, in § 3 subdirect embeddings of semisimple objects will be established
(Theorem 1). It is remarkable that in the proof of the subdirect embedding theorem,
we do not use any strong, particularly algebraic conditions (in the proof of BIRKHOFF’s
famous subdirect embedding theorem, it is essentially used that the lattice of con-
gruence-relations of an algebra is an algebraic one [2], [21].).

Using two conditions (one of them is closely related to GROTHEDIECK's [8]
axiom AB 5) we obtain our structure theorem of Wedderburn—Artinian type (Theo-
rem 2) which establishes a decomposition of certain semisimple objects in a product
of simple objects. However, it would be possible to introduce a kind of radical (in
the sense of [18] and [20]), semisimplicity properties, as well as radical properties
will not be investigated here.

Several applications of Theorems 1 and 2 will be given in § 4. Hereby we get a
common categorical aspect of facts belonging to algebra, algebraic logic, functional
analysis and general topology. It is perhaps in some extent interesting that from
this point of view the ring-theoretical and semigroup-theoretical structure theorems
of Wedderburn—Artinian type are duals of each other.
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§ 2. Preliminaries

In general our terminology is based on MITCHELL's book [15].

An object S of a category will be called a singleton, if (a) for every object A
there exists at least one morphism «:S—~A4, and (b) for every object B there exists
exactly one morphism f:B—S. All singletons of a category are equivalent. Co-
singletons are defined dually (cf, SEMADENI [16]).

Conormal quotient objects will be called factorobjects.

Throughout §2 and §3 it will be supposed that the considered category ¥
satisfies the following axioms:

(A,) Either € has a singleton S and the class Map (S, A) of all morphisms S ~A
is a set, for all A€€, or € has a cosingleton S* and Map (A, S*) is a set for all A%,

(A,) Every morphism o €% factors as a=vyu by an epimorphism u and a mono-
morphism v (the existence of images is not supposed).

(A;) € is colocally small in the sense that every A4 € ¢ has a representative class of
factorobjects which is a set:

(A,) For every family {A;};cy of factorobjects of an object A the counion |J* A,
exists') and it is again a factorobject of A; il

(As) For any two factorobjects A, B of an object C the cointersection AN*B
exists and it is again a factorobject.

(Ag) For every family {A};c; of objects, the product [] A; exists and the projec-

i€l
tions n;: [[ A; ~A;, are conormal epimorphisms.
i€l

Suppose that S is a singleton, and denote by v, the only morphism 4 —S.
According to (A;), by the axiom of choice we can select exactly one morphism
wg of each set Map (S, B). Let us define w, z=wyv,:4 - B. For any objects A4, B,
C we have w, =wg o 5. Similar consideration can be made in the case if Sis a
cosingleton (cf. [16]).

In (Ag) the second requirement, namely the projections should be conormal
epimorphisms, is fulfilled if the projections have conormal images, i.e. m; can be
factored as m;=vu where u is a conormal epimorphism and v is a monomorphism
(cf. 13] §14.2).

A variant of the dual statement of GROTHENDIECK's [8] axiom AB 5 is con-
dition

(C*). Let {A};c; be an inverse system of faciorobjects of an object A. Then
U*Ai = !lm {Ai}lEf hOlds-

We shall make use of condition
(D*) If A and B are two factorobjects of an object C such that AU*B = C and
AN*B = S then the canonical morphism y:C -~ AXB is an epimorphism.

Let us mention that by BIRKHOFF [2] VI. Theorem 4 the categories of groups,
rings, etc. fulfil condition (D*). Moreover, the category %7 of semigroups with
zero satisfies the dual condition (D) of (D*). (In %7 the coproduct means the dis-
joint union with identified 0 elements).

') The counion U *.4, means a minimal quotient object which contains every A4; as a quotient
object. By (A4,) it is uniquely determined up to isomorphism.
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Proposition. If the category € satisfies condition (D*) then the counion AU *B
of the factorobjects A, B is isomorphic to the product A X B.

Consider, namely, the diagrams

Ll &

k= & 5
AL AUB B A+AxB\+B
d P

Aﬂ“B A rJré
| B I
g S

By the assumptions there exist unique epimorphisms ¢: 4 U*B — AXBand y:A4X
XB - AU*B such that commutativity is preserved in the diagrams. Hence y¢
and @y have to be the identities of 4 U* B and A X B, respectively, and the isomor-

phism is proved.
An object A4 is said to be subdirectly embedded in the product [] A;, if there

ier
is a monomorphism y:4 — [ A, such that all morphisms x;7: 4 — A4, are conormal
ier
epimorphisms where 7; denotes the projection [ A, —A; (cf. [18]).
icr

§ 3. Structure theorem for semisimple objects

Let .# be a class of objects of the category % such that .# satlsﬁes

(1) if A€ .M and A=~ B, then B< # follows;

(i1) if A€ .#H and o: A —~ B is a conormal epimorphism, then either A~ B or a=w 4g.

Condition (i) means that .# defines an abstract property of objects, and (ii)
can be regarded as the definition of simplicity of objects.

For any object A4 let us consider the set M ,={A4,/i<I} of all (non isomorphic)
factorobjects of A, belonging to .#. We shall say that M, is the structure .#-space
of A, and the factorobjects belonging to .#, will be called .#-factorobjects. For
any object 4 the counion |J* A; of .#-factorobjects, will be called the .#-semi-

i€l
simple image of A. If M, is empty, then by the .#-semisimple image one understands
a singleton (or cosingleton). The .#-semisimple image of an object A4 will be de-
noted by %,(4). An object A will be said to be .#-semisimple, if %,(A)=A holds.

Theorem 1. Every .#-semisimple object can be subdirectly embedded in a product
of objects belonging to .#. More precisely, if M, ={A;icI} is the structure .#-space
of A, then the canonical morphism y:A — [[ A; is a monomorphism.

icl
13 D
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Proor. It is sufficient to show that y is a monomorphism. According to (A,)
y can be factored as y=vu by an epimorphism g and monomorphism v such that
the diagram

iel]

is commutative for all i€ I. Hence m;vu=2; implies that m;v is a conormal epimor-
phism for all i€J. Thus there exists a unique epimorphism ¢:C — U* 4; = 4,
i€l
moreover, from gu=¢, it follows that x is a monomorphism. Thus also y is a mono-
morphism.
An independent .#-system A={A;jic I} of A is a system consisting of .#-factor-
objects of 4 such that the canonical morphism y: U* 4; — ]] A; is an epi-

finite finite
morphism for every finite subset of 7. First of all, let us observe that y is, of course,
an isomorphism, since for z:4 — |J* 4; we have that yz is an epimorphism and
finite

so by the definition of counion, there exists an epimorphism é: [] 4; - U* 4;
finite finite

with commutativity preserved in the diagram

4 TA,
d

U*A;
finite finite
A
Hence m; 70 =mn; is valid for all i of the finite subset, and this implies that yd is the
identity morphism of [/ A;. Thus  is a monomorphism. On the other hand 6
finite

is an epimorphism, and it has to be conormal, since =4J(yz) is conormal and yx
is an epimorphism. Thus é and so also y are isomorphisms.

Let 4,c...c 4, be an ascending chain of independent .#-systems of an
object A, and denote the join of them by 4. Obviously, 4 is again an independent
4 -system. Hence by (A;), Zorn’s lemma guarantees the existence of a maximal
independent .#-system of any object A.

Lemma. Assume that the category % fulfils also condition (D*). Let A, ={A;|i€ I}
and A,={B;| je€J} be independent .{-systems of an object A. Then U* 4; = U* B;
is valid (i.e. they are isomorphic factorobjects). 1l ieJ
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PRrROOF. Assume that the statement is not true. Now, without loss of generality,
Wwe can suppose U* A; = U* B;. So there exists at least one B;<4, such that
ied
U* 4,%B;. For any finite subset N={i,, ..., i,}, clearly, U A;% B; holds. Since
€1
:dl is an independent .#-system, therefore it follows (J* A = H A;. Since B;€.M,

iEN iEN
so by (i) B; ﬂ*( ]] A;) has to be a singleton (or cosingleton). Applying the Proposi-
tion, we obtain thal B; U*( H A;) = B;X( H A;). Thus A={B;, A;licI} forms an

independent #-system whlch contradlcts the maxlmallty of 4,.
As an immediate consequence we get a

COROLLARY. Let A={A |icI} be a maximal independent .#-system of an object
A, then |J* A, = ¥ (A)
i€J
Assume that the considered category satisfies also condition (D*). To an arbitrary
object A we can define an inverse system Q as follows. Consider a maximal independ-
ent ./#-system A={A;|i€ A}, and let F(A) denote the set of all finite subset of A.
The products ]] A;, 1€ F(A) form an inverse system £, with the inverse mapping

system: for all I K¢ F(/l) and K</, the morphism nk should be the canonical

morphism nk: [J] A; — [] A,. From the definition of product and inverse limit
i€l kEK
it follows immediately J] A; = lim Q,. Let us remark that by the Proposition and

AEA
(1) U*= J] A, I€ F(A), holds, further according to the Lemma and its Corol-
i€l i€l
lary, tQJ is a cofinal subsystem of Q, = { U* 4,|4,€ M ,} which forms an inverse
finite

system itself. Thus lim Q, = lim ©, holds, and it does not depend (up to isomor-
phism) from the choice of A.

An object A will be called .#-compact, if the canonical morphism y:4 —lim Q,
is an epimorphism. For an .#-compact object A4 obviously lim Q, = |U* A4, holds,

AEM

and so .#-compactness is a special kind of condition (C*). As it was mentioned in
§ 2, condition (C*) is a variant of the dual condition of GROTHENDIECK's Axiom
AB 5. It is well known that every variety of algebras does satisfy AB 5, but it does
not fulfil the dual condition of AB 5. In the algebra .#-compactness has a topological
meaning, and it is essentially a generalization of LEPTIN’s “linear compactness in the
narrow sense’ ([14], [20]; see also §4).

Theorem 2. Assume the category satisfies condition (D*). The object A is .#-com-
pact and .#-semisimple if and only if A = [] A, where A={A;|i¢ A} forms amaximal
independent .#-system of A. i€4

PRrOOF. By the Corollary we have
A=%yA)= U4, =1lim{ U*4;} = [] 4,.
AEA finite AEA

Restricting the considerations to all cardinals smaller than a given one in (A;)
and (Aj;) as well as for the cardinality of M ,, we obtain obvious variants of Theo-
rems | and 2.

13*
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§ 4. Some special cases

In this section we present several applications of Theorems | and 2, as well
as their duals. The special categories given below, are chosen from the algebra,
functional analysis, algebraic logic and general topology. The given examples, of
course, will not exhaust all the possibilities of the applications. Moreover, we will
concern only interpretations of our results, further investigations in special concrete
categories, will not accomplish.

1. Specialised category-theoretical investigations with strong ring- and module-
theoretical background were made by SuLINskI [18], KwANGIL KoH [12] and the
author [20]. Theorem 1 infers SuLINsKkI's [18] Theorem 4.9 and Theorem 2 yields
Theorem 5. 6 of [20].

2. Let ¥ be the category of rings. Denote the class of all simple rings with
unity by .#. The .#-semisimple rings are exactly those having zero Brown—McCoy
radical. If a ring is semisimple and it satisfies the descending chain condition, then
Theorem 2 yields the classical Wedderburn—Artin Structure Theorem.

3. Let %, denote the category of (left) modules over a ring R. An R-module
M is irreducible, if it is simple and RM =0. Consider the class .# of all irreducible
R-modules. Now an R-module A is .#-semisimple precisely if the intersections of
all its submodules L with A/L€.#, is zero; i.e. A has zero Kertész radical ([10], and
[11] p. 141). The ring R is semisimple in the sense of KERTESZ, if it is a semisimple
R-module. The Kertész radical of a ring need not coincide with the Jacobson radical
(cf. SzAsz [19]), but if R has right unity, then they coincide. Let R be a ring with
right unity. The finite intersections of left ideals L; with R/L;€.#, icl, form a
filter which induces a linear topology in R. This topology is Hausdorffian if and
only if R is semisimple. If R is linearly compact (see LEpTIN [14]) then this topology
is complete and so by ZELINSKY [22] the canonical map y: R/ (| L; — lim {R/ ﬁn L}

iel i

nite
is an isomorphism and a homeomorphism too. Thus the linearly compact Jacobson

semisimple ring R is .#-compact and .#-semisimple. Hence Theorem 2 infers the
Leptin—Noether-decomposition of semisimple linearly compact rings with right unity
in a complete direct sum of irreducible R-modules [14].

4. Let €y denote the category of N-groups over a near ring N. Decomposition
theorems and a radical were developed by BLACKETT [2] and BETSCH [1]. As in §3,
Theorem 1 and 2 yield again corresponding statements.

5. Consider the category €y of commutative Banach algebras, and let .# consist
of the field of complex numbers. .#-semisimplicity means just the usual one, and
so by Theorem 1 the elements of a semisimple commutative Banach algebra are com-
plex valued functions. (C*-algebras are semisimple; for details we hint e.g. to [7].)

6. Let €, denote the category of distributive lattices, and let .# consist of the
two-element lattice (0, 1). For any elements d,, d, of a distributive lattice D there
exists a conormal epimorphism ¢:D —(0, 1) such that ¢(d,)=0 and ¢(d,)=1. This
implies that every distributive lattice is .#-semisimple. Thus Theorem 1 yields that
every distributive lattice (and so also every Boolean algebra) can be embedded in the
lattice of all subsets of a set (cf. BIRKHOFF [2]).

7. Consider the category €p of polyadic Boolean algebras. Let .# consist of
simple polyadic algebras. Now .#-semisimplicity means the usual one. Since every
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polyadic algebra is semisimple, so Theorem 1 infers the algebraic version of GODEL’s
completeness theorem. (For details we refer to HaLmos [9].)

8. Let €1 be the category of topological spaces. Put .# ={(0, 1)} where (0, 1)
denotes the discrete two-point space. If T€¢%; is a O-dimensional space, then T
has a base U= {U};¢, consisting of open- and closed-sets and the mappings

1 if xeU,
‘f’i(—“)z{o if x¢U,

separate the points of 7. Hence the O-dimensional spaces are .#-semisimple. Thus

Theorem 1 implies that the Cantor cube D™ = [] (0, 1) is a universal space for
i€r

0-dimensional spaces of weight |I|=m= R (cf. ENGELKING [5]).

9. Let ¥} denote the category of semigroups with zero, and let .#" be the class
of completely 0-simple semigroups (a semigroup S with zero is completely 0-simple,
if it has only trivial ideals, $?=0, moreover S contains 0-minimal left and right
ideals, cf. CLIFFORD—PRESTON [4]). Now %7 fulfils all the dual conditions of axioms
(A,)—(A) as well as .#" satisfies the duals of (i) and (ii). Since €7 satisfies AB 5,
so every semigroup is dually .#"-compact, and also the dual condition (C) of (C*)
is fulfilled, further also (D) holds. (Coproduct means the disjoint union with identified
0 element.) Thus the dual assertion of Theorem 2 establishes a decomposition in
disjoint union of completely O-simple semigroups for all co-.#*-semisimple semi-
groups. (Further classifications of co-.#"-semisimple semigroups have been given
by STeINFELD [17].) However, this statement is trivial it seems to be essentiall for
some further developments that from this point of view the decomposition theory
of semigroups is dual to that of rings. Up to this time there were made many attempts
to obtain results for semigroups which are analogous to ring-theoretical results
concerning the multiplicative semigroup of rings (e.g. there were introduced
several kinds of radicals for semigroups). This duality gives a new aspect of the rela-
tion between ring and semigroup theory.

10. Let ¢} denote the category of compact Hausdorff spaces. The one point
space is a singleton in €, further all the dual conditions of (A,)—(A,) are satisfied
(in (A,) and (A) the Cech—Stone compactification of the union and disjoint union
should be considered, respectively). Let .#* consist of the one point space. Since
every space of €} is co-.#"-semisimple, so the dual assertion of Theorem 1 yields
the well known fact that every compact Hausdorff space is a continuous image of the
Cech— Stone compactification of a discrete space (cf. e.g. [16]).

11. Let €% be the category of abelian groups, and let .#* consist of a cyclic
p-group for a fixed prime p. The co-.#-semisimple groups are just the elementary
p-groups, and by (C) and (D) the dual assertion of Theorem 2 yields the decomposi-
tion of elementary p-groups in a discrete direct sum of cyclic p-groups (cf. FucHs [6]).
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