Krabbe’s generalized functions as convolutions
quotients

By A. SZAZ (Debrecen)

In this paper applying the methods of [2] and [7] Krabbe’s generalized functions
(see [1]) will be embedded in a quotient ring which will be used for consideration
of that.

A convolution algebra of locally integrable functions

Definition 1. Let #={a, f) be an arbitrary (open, half-open or closed,
bounded or unbounded) interval of the real line with endpoints 2 and p such that
0es.

Let Z(#) denote the vector space of locally Lebesgue-integrable complex-
valued function on # over the complex number field #".

For f,ge Z(5), let
(1) () (0) = [ ft—Dg@)dr  (t€S).

It is easily seen that #(J ) with (1) is a commutative algebra over #". More-
over it follows immediately from Titchmarsh’s theorem (see [3]) that f¢ 2 ()
(f(1)#0 almost everywhere on .#) is a divisor of zero in Z(#) if and only if there is
a real number 9 suchthat0<=3<1 and f(7)=0 almost everywhere on at least one of the
sets Jx<1=0 and 0=r<J9p which is not empty.

Definition 2. Let 7 (#) be the subset of .Z(#) to which all those functions
w belong which are infinitely differentiable in # and satisfy w®(0)=0 for every
integer k=0.

Obviously .7 (f) is a subalgebra of & (#).
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Convolution quotients

In theory of algebras it is known that every commutative algebra 4 over a
field K with at least one element not a divisor of zero has a quotient ring Q which
is a commutative ring with unit element. Furthermore K and A4 are embedded in Q
as follows:

def

@ e ‘.‘? @eK),
def

© a=%  (@ca,

where b€ A4 is not a divisor of zero in A.
Definition 3. Let Q(5) be the quotient ring of £ (5).

Remark 1. It is obvious that Q([0, <)) is the Mikusinski operator field (see
[3D) and Q([0, T]) where 0<=T=-<= is the Mikusinski ring (see [4]).

It is easy to show that Q({x, f8)) is the direct sum of Q((2, 0]) and Q([0, §))
if x<0<p, and Q((«, 0]) and Q([0, —x)) are isomorphic. In [5] it is proved that
0([0, T)) and Q([0, T]) are also isomorphic.

In this way the investigation of Q(#) can be reduced to that of Q([0, 7']) and
Q([0, =)). In [6] an operational calculus belonging to Q((— <=, ==)) has been con-
structed in the preceding way.

Theorem 1. For each q € Q(¥) there exist w, ® €7 (F) such that q = :)
ProorF. Let T be an element of .7 (#) which is not a divisor of zero in Z(5).

f
If g ==
. g
Corollary 1. 1. The quotient rings of 7 () and £ (#) are isomorphic.

€Q(F) then w=ftr and w=gt have the required properties.

Definition 4. Let {x} denote the constant function of % (.#) whose value is a.

Theorem 2. If f€ L (F) is locally absolutely continuous then for the convolution
quotient § = -—:ﬂ

{1}
C)) sf = f"+/(0)
holds.

This formula is a generalization of the well-known formulas of Mikusinski (see
[3] p. 349 and [4]), and can be proved quite similarly.

Generalized functions

Definition 5. Let ¥(#) be the set of all mappings F which map 7 (#) into
T (F) such that

(5 F(ww)=F(w)o
holds for all w, w€ 7 ().
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In 4(#) let the usual equality, addition and composition of mappings be

defined.
It will be shown that ¥(#) forms a commutative ring with unit element under

the preceding operations.

Remark 2. Byterms of [2] the elements of ¥(.# ) is maximal multiplier operators
of 7 (). Moreover, it is proved that the quotient algebra of a commutative algebra
A (if it exists) is isomorphic to a subalgebra of the algebra of all maximal multipliers
of A whose domain is without annihilator.

Theorem 3. Let w, be a fixed element of 7 () which is not a divisor of zero in
T(F). If FE4(F), then
F (o) w

©) F) ==,

PrROOF. Let FE%(f), then for @, and all we7 (J) by (5) we have F(w)w,=
= F(wo)w. Hence, because w, is not a divisor of zero in 7 (#) the formula (6)

follows.

(weT(#)).

Corollary 3.1. 9(¥) is a commutative ring with unit element.

Corollary 3.2. From (6) it follows that F is linear. Thus (%) is the ring
of Krabbe’s generalized functions if .# is open (see [1]).

Corollary 3.3. FE%(¥) has an inverse in 4 () if and only if the range of F
is 7 (#), and then

. T .
is the inverse of Fin %(f).

PROOF. Suppose that F€ @ (f)hasaninversein ¥(f),i.e., thereexistsa G€¥(5)
such that (FG)(w)=F(G(w))=w for all weJ (). Thus g F=7(F). On the

other hand, then by (6) F(w) = il Cl) wand G(w) = GE:"’) w, and so (FG)(w)=
0 0
= —F%f(w'ﬂw (we T (£)). Hence F(wo)G(wo)=w}. Since w, is not a divisor
0

of zero in 7 (¥) it follows that F(w,) is also not a divisor of zero in 7 (£) and
G(wo) - (@)
W @y
Conversely, if rng F=7 (J) then there exists at least one wy €7 (S) such that
®o=F(w,). Thus by (6) we have w,=F(w,) = -F—g:’i) wo and so F(w)we=w}.
0
Since @, is not a divisor of zero in 7 (£), it follows that F(w,) is also not a divisor

of zero in 7 (#). Now it is clear that G(w) = Do (weF (F)) is the inverse of
Fin 4(5). F (o)

Theorem 4.
(3) F

d;r F (o)

3 (Fe%(s))
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is an embedding of %(5) in Q(5) and after this embedding

)] Y(S)Q(F), 9(F5)# Q(F)
holds.

We will show only that 4(J)=Q(#). Namely, for example vml—EQ(.J“r ) but
0

B ~-#%(5). Indeed let us suppose the contrary that A €%(S). Then for F= L3
Wo o) ®o
1 F(o
by (8) - = £
@ o
Remark 3. In this sense arbitrary convolution quotient g is identifiable with
the mapping

(10) Fy(w)y=qw (wE{wE.?'(f) 2 qweT (F)})

and so the convolution quotient ¢ is a linear operator which maps an ideal of 7 ()
(with at least one element not a divisor of zero in 7 (#)) into 7 () satisfying the
equation (5) such that it has no proper extension in 7 (£).

Now the following statement is quite obvious:

follows, and so F(w,)=1 is a contradiction.

Theorem 5. A convolution quotient q is an element of 4 (5 ) if and only if qw € 7 (F)
for allwe T (J).

Corollary 5. 1. Kc%(¥).
Corollary 5.2. Z(£)c%(S).
Corollary 5.3. s€%(#) and thus the formula (4) holds also in 4(f).

Definition 6. Let {#(f).s} denote the subring of Q(#) generated by Z ()
and s.

Corollary 5.4. {Z(5),s} C9(F).
Problem. Is the equality 4(5)={Z(5), s} true?

Finally, I should like to express my gratitude to E. GESZTELYI and Z. DAROCZY
for their valuable comments and advice.
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