Krabbe's generalized functions as convolutions quotients

By Á. SZÁZ (Debrecen)

In this paper applying the methods of [2] and [7] Krabbe's generalized functions (see [1]) will be embedded in a quotient ring which will be used for consideration of that.

A convolution algebra of locally integrable functions

Definition 1. Let $\mathscr{I} = \langle \alpha, \beta \rangle$ be an arbitrary (open, half-open or closed, bounded or unbounded) interval of the real line with endpoints α and β such that $0 \in \mathscr{I}$.

Let $\mathscr{L}(\mathscr{I})$ denote the vector space of locally Lebesgue-integrable complex-valued function on \mathscr{I} over the complex number field \mathscr{K} .

For $f, g \in \mathcal{L}(\mathcal{I})$, let

(1)
$$(fg)(t) = \int_0^t f(t-\tau)g(\tau)d\tau \qquad (t \in \mathcal{I}).$$

It is easily seen that $\mathcal{L}(\mathcal{I})$ with (1) is a commutative algebra over \mathcal{K} . Moreover it follows immediately from Titchmarsh's theorem (see [3]) that $f \in \mathcal{L}(\mathcal{I})$ ($f(t) \neq 0$ almost everywhere on \mathcal{I}) is a divisor of zero in $\mathcal{L}(\mathcal{I})$ if and only if there is a real number ϑ such that $0 < \vartheta < 1$ and f(t) = 0 almost everywhere on at least one of the sets $\vartheta \alpha < t \leq 0$ and $0 \leq t < \vartheta \beta$ which is not empty.

Definition 2. Let $\mathcal{F}(\mathcal{I})$ be the subset of $\mathcal{L}(\mathcal{I})$ to which all those functions w belong which are infinitely differentiable in \mathcal{I} and satisfy $w^{(k)}(0)=0$ for every integer $k \ge 0$.

Obviously $\mathcal{F}(\mathcal{I})$ is a subalgebra of $\mathcal{L}(\mathcal{I})$.

288 Á. Száz

Convolution quotients

In theory of algebras it is known that every commutative algebra A over a field K with at least one element not a divisor of zero has a quotient ring Q which is a commutative ring with unit element. Furthermore K and A are embedded in Q as follows:

(2)
$$\alpha = \frac{\alpha b}{b} \qquad (\alpha \in K),$$

(3)
$$a = \frac{ab}{b} \qquad (a \in A),$$

where $b \in A$ is not a divisor of zero in A.

Definition 3. Let $Q(\mathcal{I})$ be the quotient ring of $\mathcal{L}(\mathcal{I})$.

Remark 1. It is obvious that $Q([0, \infty))$ is the Mikusiński operator field (see [3]) and Q([0, T]) where $0 < T < \infty$ is the Mikusiński ring (see [4]).

It is easy to show that $Q(\langle \alpha, \beta \rangle)$ is the direct sum of $Q(\langle \alpha, 0])$ and $Q([0, \beta \rangle)$ if $\alpha < 0 < \beta$, and $Q(\langle \alpha, 0])$ and $Q([0, -\alpha \rangle)$ are isomorphic. In [5] it is proved that Q([0, T)) and Q([0, T]) are also isomorphic.

In this way the investigation of $Q(\mathcal{I})$ can be reduced to that of Q([0, T]) and $Q([0, \infty))$. In [6] an operational calculus belonging to $Q((-\infty, \infty))$ has been constructed in the preceding way.

Theorem 1. For each $q \in Q(\mathcal{I})$ there exist $w, \omega \in \mathcal{F}(\mathcal{I})$ such that $q = \frac{w}{\omega}$.

PROOF. Let τ be an element of $\mathscr{T}(\mathscr{I})$ which is not a divisor of zero in $\mathscr{L}(\mathscr{I})$. If $q = \frac{f}{g} \in Q(\mathscr{I})$ then $w = f\tau$ and $\omega = g\tau$ have the required properties.

Corollary 1. 1. The quotient rings of $\mathcal{F}(\mathcal{I})$ and $\mathcal{L}(\mathcal{I})$ are isomorphic.

Definition 4. Let $\{\alpha\}$ denote the constant function of $\mathcal{L}(\mathcal{I})$ whose value is α .

Theorem 2. If $f \in \mathcal{L}(\mathcal{I})$ is locally absolutely continuous then for the convolution quotient $s = \frac{1}{\{1\}}$

$$(4) sf = f' + f(0)$$

holds.

This formula is a generalization of the well-known formulas of Mikusiński (see [3] p. 349 and [4]), and can be proved quite similarly.

Generalized functions

Definition 5. Let $\mathscr{G}(\mathscr{I})$ be the set of all mappings F which map $\mathscr{T}(\mathscr{I})$ into $\mathscr{T}(\mathscr{I})$ such that

$$(5) F(w\omega) = F(w)\omega$$

holds for all $w, \omega \in \mathcal{F}(\mathcal{I})$.

In $\mathscr{G}(\mathcal{I})$ let the usual equality, addition and composition of mappings be defined.

It will be shown that $\mathcal{G}(\mathcal{I})$ forms a commutative ring with unit element under the preceding operations.

Remark 2. By terms of [2] the elements of $\mathscr{G}(\mathcal{I})$ is maximal multiplier operators of $\mathscr{T}(\mathcal{I})$. Moreover, it is proved that the quotient algebra of a commutative algebra A (if it exists) is isomorphic to a subalgebra of the algebra of all maximal multipliers of A whose domain is without annihilator.

Theorem 3. Let ω_0 be a fixed element of $\mathcal{T}(\mathcal{I})$ which is not a divisor of zero in $\mathcal{T}(\mathcal{I})$. If $F \in \mathcal{G}(\mathcal{I})$, then

(6)
$$F(w) = \frac{F(\omega_0)}{\omega_0} w \qquad (w \in \mathcal{F}(\mathcal{I})).$$

PROOF. Let $F \in \mathcal{G}(\mathcal{I})$, then for ω_0 and all $w \in \mathcal{T}(\mathcal{I})$ by (5) we have $F(w)\omega_0 = F(\omega_0)w$. Hence, because ω_0 is not a divisor of zero in $\mathcal{T}(\mathcal{I})$ the formula (6) follows.

Corollary 3.1. $\mathcal{G}(\mathcal{I})$ is a commutative ring with unit element.

Corollary 3. 2. From (6) it follows that F is linear. Thus $\mathcal{G}(\mathcal{I})$ is the ring of Krabbe's generalized functions if \mathcal{I} is open (see [1]).

Corollary 3. 3. $F \in \mathcal{G}(\mathcal{I})$ has an inverse in $\mathcal{G}(\mathcal{I})$ if and only if the range of F is $\mathcal{F}(\mathcal{I})$, and then

(7)
$$F^{-1}(w) = \frac{\omega_0}{F(\omega_0)} w \qquad (w \in \mathcal{F}(\mathcal{I}))$$
 is the inverse of F in $\mathcal{G}(\mathcal{I})$.

PROOF. Suppose that $F \in \mathcal{G}(\mathcal{I})$ has an inverse in $\mathcal{G}(\mathcal{I})$, i.e., there exists a $G \in \mathcal{G}(\mathcal{I})$ such that (FG)(w) = F(G(w)) = w for all $w \in \mathcal{T}(\mathcal{I})$. Thus rng $F = \mathcal{T}(\mathcal{I})$. On the other hand, then by (6) $F(w) = \frac{F(\omega_0)}{\omega_0} w$ and $G(w) = \frac{G(\omega_0)}{\omega_0} w$, and so $(FG)(w) = \frac{F(\omega_0)G(\omega_0)}{\omega_0^2} w$ ($w \in \mathcal{T}(\mathcal{I})$). Hence $F(\omega_0)G(\omega_0) = \omega_0^2$. Since ω_0 is not a divisor of zero in $\mathcal{T}(\mathcal{I})$ it follows that $F(\omega_0)$ is also not a divisor of zero in $\mathcal{T}(\mathcal{I})$ and $\frac{G(\omega_0)}{\omega_0} = \frac{F(\omega_0)}{\omega_0}$.

Conversely, if rng $F = \mathcal{T}(\mathcal{I})$ then there exists at least one $w_0 \in \mathcal{T}(\mathcal{I})$ such that

Conversely, if rng $F = \mathcal{F}(\mathcal{I})$ then there exists at least one $w_0 \in \mathcal{F}(\mathcal{I})$ such that $\omega_0 = F(w_0)$. Thus by (6) we have $\omega_0 = F(w_0) = \frac{F(\omega_0)}{\omega_0} w_0$ and so $F(\omega_0) w_0 = w_0^2$. Since ω_0 is not a divisor of zero in $\mathcal{F}(\mathcal{I})$, it follows that $F(\omega_0)$ is also not a divisor of zero in $\mathcal{F}(\mathcal{I})$. Now it is clear that $G(w) = \frac{\omega_0}{F(\omega_0)} w \ (w \in \mathcal{F}(\mathcal{I}))$ is the inverse of F in $\mathcal{G}(\mathcal{I})$.

Theorem 4.

(8)
$$F = \frac{F(\omega_0)}{\omega_0} \qquad (F \in \mathscr{G}(\mathscr{I}))$$

is an embedding of $G(\mathcal{I})$ in $Q(\mathcal{I})$ and after this embedding

$$\mathscr{G}(\mathscr{I}) \subset Q(\mathscr{I}), \, \mathscr{G}(\mathscr{I}) \neq Q(\mathscr{I})$$

holds.

We will show only that $\mathscr{G}(\mathscr{I})\neq Q(\mathscr{I})$. Namely, for example $\frac{1}{\omega_0}\in Q(\mathscr{I})$ but $\frac{1}{\omega_0}\notin \mathscr{G}(\mathscr{I})$. Indeed let us suppose the contrary that $\frac{1}{\omega_0}\in \mathscr{G}(\mathscr{I})$. Then for $F=\frac{1}{\omega_0}$ by (8) $\frac{1}{\omega_0}=\frac{F(\omega_0)}{\omega_0}$ follows, and so $F(\omega_0)=1$ is a contradiction.

Remark 3. In this sense arbitrary convolution quotient q is identifiable with the mapping

(10)
$$F_{q}(w) = qw \quad (w \in \{w \in \mathcal{F}(\mathcal{I}) : qw \in \mathcal{F}(\mathcal{I})\})$$

and so the convolution quotient q is a linear operator which maps an ideal of $\mathcal{F}(\mathcal{I})$ (with at least one element not a divisor of zero in $\mathcal{F}(\mathcal{I})$) into $\mathcal{F}(\mathcal{I})$ satisfying the equation (5) such that it has no proper extension in $\mathcal{F}(\mathcal{I})$.

Now the following statement is quite obvious:

Theorem 5. A convolution quotient q is an element of $\mathscr{G}(\mathcal{I})$ if and only if $qw \in \mathcal{T}(\mathcal{I})$ for all $w \in \mathcal{T}(\mathcal{I})$.

Corollary 5. 1. $K \subset \mathcal{G}(\mathcal{I})$.

Corollary 5. 2. $\mathcal{L}(\mathcal{I}) \subset \mathcal{G}(\mathcal{I})$.

Corollary 5. 3. $s \in \mathcal{G}(\mathcal{I})$ and thus the formula (4) holds also in $\mathcal{G}(\mathcal{I})$.

Definition 6. Let $\{\mathcal{L}(\mathcal{I}), s\}$ denote the subring of $Q(\mathcal{I})$ generated by $\mathcal{L}(\mathcal{I})$ and s.

Corollary 5.4. $\{\mathcal{L}(\mathcal{I}), s\} \subset \mathcal{G}(\mathcal{I})$.

Problem. Is the equality $\mathscr{G}(\mathcal{I}) = \{\mathscr{L}(\mathcal{I}), s\}$ true?

Finally, I should like to express my gratitude to E. Gesztelyi and Z. Daróczy for their valuable comments and advice.

References

- G. Krabbe, An algebra of generalized functions on an open interval, two-sided operational calculus, Bull. Amer. Math. Soc., 77, (1971), 78—84.
- [2] L. Máté, Multiplier operators and quotient algebra, Bull. Acad. Polonaise, 8, (1965), 523-526.

[3] J. Mikusiński, Operational calculus, New York, 1959.

- [4] J. MIKUSIŃSKI, Le calcul opérationel d'intervalle fini, Stud. Math., 15, (1956), 225-251.
- [5] П. Антосик, Оь изоморфизме некоторых колец операторов, Stud. Math. 25 (1965), 227—230 [6] Á. Száz, Zweiseitige Operatorenrechnung, Publ. Math. Debrecen, 18, (1971), 211—237.
- [7] R. A. STRUBLE, An algebraic view of distributions and operators, Stud. Math., 37, (1971), 103— 109.
- [8] A. ERDÉLYI, Operational calculus and generalized functions, New York, 1962.

(Received March 25, 1971.)