Publ. Math. Debrecen
49 / 3-4 (1996), 201-209

Weighted Nikolskii-type inequalities 11

By I. JOO (Budapest)

Abstract. In the paper is proved that the Nikolskii-type inequality (2) below is
sharp in the cases: p<g;p>gm>1;p>¢q,0<m<q.

The present paper is a contribution to the investigations initiated by
P. NEval, V. ToTIK and others (see [8], [9] and [1] for further references).

Let

’oa/Z

w(z) = wa(z) = || - exp(—|z|™), z€R, m>0.

Given p, ¢ and m such that 0 < p, ¢ < co, m > 0 define the Nikolskii
constant N,, = N, (m,p,q), n=1,2,... by
nt/m1/p=1/q) if p < g,
n(=1/m)A/a=1/p)  if p > g and m > 1,
(log(n +1)a=V/P if p> g and m =1,
1 ifp>qgand 0 <m < 1.

(1) Nn(m7p7Q) =

For 0 < p < oo denote || f||, the expression

111, = ([ 1 @rat) "

One of the results proved in [1] is the following.

Theorem ([1]). Suppose 0 < p, ¢ < 00, a > 0, m > 0. Then for any
polynomial p,, € I1,, of degree < n we have

(2) HpnwaHp <c- Nn<map> Q) : Hpnwquv

where ¢ = ¢(m, p, q) is a positive constant independent of n, p,.
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The aim of the present note is to prove that this theorem is sharp in
the cases p < ¢;p>qand m > 1; p > qgand 0 < m < 1. We think that
this theorem is sharp also in the case of p > ¢ and m = 1, but now we are
not able to prove it. Namely, we show that in the mentioned cases there
exist ¢* > 0 and polynomials {R} }7° ; with deg R}, < n such that

n=1
(3) Ry wallp = " Nu(m,p,q) - [ Rywallg-

forn=1,2,... .
For the proof of (3) we need some lemmas. First we prove estimates

for the Christoffel function of w,(x). For the definition and other results
see [2], Ch. 1.

Lemma 1 ([3], p. 338, Lemma (2.2)). Let

x|, |r| <1
’U(a)(IL') _ { ‘ ’ | | a> _1’
0, |z > 1

and denote A, (v(®), &) the n-th Christoffel function of v(*)(x). Then

¢ —92 Cyq 2
n N l—ﬁgg Sl,
1
4 AR =nd g (1-¢), D<2<1- 2
n n n
o, £<3
\ n

where ¢4, ¢5 € (0,1) are arbitrary fixed numbers and concerns n.

Lemma 2. Let wy(z) be the function we(x) = |z|% exp(—|z|™) where
a/2>—1, m > 0. Then

(5) An(We, ) <

el Fonh e < fa] < o,

K exp(—|z|™) - {

n(%"’l)(%_l), |gj| < 6771%_1

further
a) in the case of m > 1:

2|2 -l crnm b < || < cgnim,
An(ita, ) > K exp(—la|™)-
o n(EH)ED 2] < onm !
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b) in case m = 1 we have
Lk cs
log(n+1)’ log(n+1)
e
< ——.
2l = log(n + 1)

S ‘.fl?‘ S CeTl,
An(Wa, 7) = K exp(—|z]) -
log(n+1)]72~",

c) finally, in case 0 < m < 1:

An(Wq, ) >

5 Co

log(n + 1) (log(n +1))m

1
S ZI?l S CGTLm?

K exp(~[o]")- .

log(n+ 1) 2m~m, |z| < (log(n + 1))%.

Proor. 1. First we prove the upper estimate. We need a suitable
polynominal Py, 9(x) € I}, /o) which satisfies the following condition:

(6) 0<eg< P[i/2] (x) exp(—|z|™) <3, |z < csmm .

We will obtain the desired polynominal using Lubinsky’s function G de-
fined by

(7) G(@:Hi(%)fﬁ%w%
k=1

([4], (17)) which originates from a function introduced by Mittag—Leffler
cf. [5].

According to [4] Theorem 6 we have G(x) < exp(|z|™), z € R. If we
choose 1, to be the [n/4]-th partial sum of the power series in (7) then

(8) 0 <rp(z) <cexp(|z|™), =xe€R.

Moreover, examination of the remainder term G — 7, shows that there
exists by > 0 (absolute constant) such that G(z) < r,(z) + o(1) uniformly

for |z| < bon'/™, n=1,2,... where lim o(1) = 0. Hence we have
(9) exp(|z|™) < ern(x), x| < bon'/™.

Let P[n/g] (x) be
i
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Then from (8) and (9) we get
0 < cexp(|z|™) < Py, jo(z) < cexp(|z|™), |z| < bo V2w,

i.e. Py, 9 satisfies (6). It is well known that

(10) An(Wq,x) =  min /]Tn 1(1)Pwe (t)dt.
n 1€, -1

Th-1(z)=1 —c0

Applying [6], Theorem 4.16.2, we obtain

(11)  Ap(wa,z) <

1
—cint/™

<c_ min / T 21 (D17 - | P2y (£)/ Pryjog () |Pwa (£ dt.
Tny21€n /2

Tiny2)(®)=1 —cynl/m

Thus by (6) we have

clnl/'rn,

An(We, )

12 AL A min / T, tz't%dt,
12 CR S Cn, M8, [Tty (1) - [2]

Tiny21(x)=1 —cynl/m

where |z| < by /2 - n'/™

By a change of variables s = m we obtain from (12)

A (We, x) 1 a1 (

AW, ) L drgd g </>_),

(13)  exp(=fz™) © A cint/m
|| < by ¥/2nm .

From (13) the desired (5) follows.

2. Now we prove the lower estimate.

a) The case m > 1. There exists a polynomial P,(x) of degree at
most n for which

1
Py = exp(—|z[™), |z| < Bnwm,

([7], Theorem 1). Using these polynomials we can prove the estimates.
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From (10)
Bnl/™
> i 2
)\n(wouaf) - an_IlnGllI_[ln_l / ‘Tn_l(t)’ wa(t)dt
Th_1(xz)=1 _ppl/m
Bnl/m
> k:exp(|90|m) . min |Tn—1(t)2 . |Pn(t)/Pn(ac)|2 . |t|%dt
Tn71€Hn71
Th-1(x)=1 _pBpl/m
Bnl/m
z kexp(a]™)- i Tooa (O] - |t]% dt
> kexp(|z|™) r,, min / Ton_1(£)]? - |¢]
TZn—l(x):l — Bnl/m
and so
(14) M > knmtE “Aop, <U(a/2)7 . > . x| < Bnw.
exp(—|z|™) Bnl/m

Now we prove that Lemma 2, (a) is valid for |z| < e¢n!/™ where ¢ is an
arbitrary large constant. Since \,(w,,x) is a decreasing function of n we
have

An(We, ) Men (Wa, )
exp(—|z|™) — exp(—|z[™)

v

i VO (N7 R
n 2 2k (U 7B<kn)1/m 9

lz| < B(kn)Y/™, where k is arbitrary fixed integer. According to (4)
)\an ('U(a)7£> = )‘n (U(a)7£> .

Consequently Lemma 2 (a) is valid for |z| < cn!/™.
b) Case m = 1. The calculation is the same as in a) but we use

Pryog(nt1)](x) instead of P,(z). Here Pr,jognt1)(x) is of degree at
most Ln[log(n + 1)] and satisfies

(15) Pl%n[log(n—i—l)](x) = eXp(_’xD7 ‘1" < BTL,
see [7].

Hence we get

An(We, )

16 o=zl

o (6% z
> k- nit?e 'Acnlog(n-l—l) (U( /2), B_n> ) |$| < Bn,
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further
A (Wa, ) Agn(Wa, x) e x
) ) Melest) o gy e 2
exp(—Ja]) = exp(—fa) ~ ettt ) (T By )

| < Bkn,

where k is arbitrary fixed positive integer. Consequently Lemma 2 (b) is
valid for |z| < ¢n, where ¢ is an arbitrary large constant.

c) Case 0 < m < 1. In this case we have

Bnl/™

An(Wa, ) > o min / T () e (1)t

Tn—l(d?):l —Bnl/m

Bin

=k min |Tn—1(‘s|1/m)|2 : |S|ﬁ+%_1 . 6—\S|ds
Tn716Hn,1
Th-1(z)=1 —Bin
Bin
. o )

Ty (l2|™)=1 —B1n

= EAn/m (w%+%_2, mm) .
Here we can use the result of Lemma 2, (b) and thus we get Lemma 2, (c).

PROOF of the sharpness of Nikolskii-type inequality.

Case (i): p <gq.

We will obtain the polynomials R} from D. S. LUBINSKY’s function
G defined by (7). According to [4] Theorem 6 G(z) < exp(|z|™), x € R,
and thus if we define R} to be the n/2-th partial sum of the power series
in (17) then

(17) 0 < R;(x) < Kexp(|z|™), xe€R.

Moreover, a close inspection of the remainder term G'— R}, shows that there
exists £ > 0 such that G(z) < R%(x) + o(1) uniformly for || < en'/™ and

n=1,2,... where lim o(1) = 0. Hence we have
(18) exp(jz|™) < K - R%(z), |z| <enwm.

Let » > 0. Then we obtain

|Riwallr = ||Rawax,

,Cnl/m,cnym] ; = HX[?cnUm’Cﬂl/m]-ch

r



Weighted Nikolskii-type inequalities II 207

where v, (x) = |2|°/2, n = 1,2, ... which proves (3) in case p < q.

Case (ii): p > ¢ and m > 1. Pick ro > 0. We will prove (3) by
constructing a sequence of polynomials { R}, deg R < n, such that
for every fixed r > rg

(19) IR, - wally < n(/m=Dr -y =12

Given ry > 0, let us choose an integer M > 0 such that rq > M ~!. Define
the weight function u as follows

u(x) = |22 - exp(~|z|" /M), x€R,

and let {p,(u,x)}72, be the system of polynomials which is orthonormal
with respect to u. Define the function K, (u) by the formula

n—1
Kn(uwray) = Zpk(uux) 'pk<u>y)’
k=0
and let N = max{l, [ﬁ] } Then

2M
(20) RY = (KN<U7337~T0) )
" Kn(u, zo, o)

is a polynomial of degree at most n, where xzq # 0 is arbitrary fixed,
independent of n. We may assume that zq > 0.

In what follows we will show hat {R}}°% satisfies (19). Using or-
thogonality it follows

M

* K2 (U,SL‘,IL’()) —
||Rnwa||1/M = /mu(x)dx = KNM(U,(EO,QTO).
R

According to the Lemma 2, (a) we obtain Ky (u, zq, o) = O(N1/m~1),
Therefore we obtain

[ Rywalli/ar < Knp(/m)-1M
and by (2)
@) |Riwallr < Kn0=m)M=2) | Riwglly jar < K - n(/m)=Dr

holds for n = 1,2, ... . The next step is to show that there exists 0 < e < 1
such that

1
(22) R (z) > 2 |z — xo| < en/™~1,
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By (20) (R:)=w is a polynominal of degree at most n such that
(R*(x0))27 = 1. Hence for |z — 20| < en(t/™=1 n > ng = ng (0, m),
zo

= [ By a

xT

1~ (R; ()5

Zo 2 2

< Vil § [|[(Ruen ]

x

N|=

o 2

<wvle=aol§ [ |[(Rren] - vald

xT

[(Ra) ] - va

Sk\/|x—x0\-‘

Here, using a Markov—Bernstein type inequality [1], the right-hand side
can be estimated in terms of

Kn(=W/m) /g~ o] - H(R;)ﬁ\/a H2

= KnU=0/m) e — a -Kx,%(u,mo,mo) = Ky/|z — x| e

Hence we get

2

1

1= (R ()7

= Kn—7 . V |z — zol,

where |z — 2| < en™/™ =1 from this (22) immediately follows. From (22)
we obtain

(23) Kn/m=0r < R*w, |, n=12,....
From (21) and (23) the desired (19) follows.



Weighted Nikolskii-type inequalities II 209

References

[1] 1. Jo6, Weighted Nikolskii-type inequalities, Publ. Math. Debrecen 44 (1-2) (1994),
5-30.

[2] G. FrREUD, Orthogonal Polynomials, Pergamon Press Ozford et Akadémiai Kiadd
Budapest, 1971.

[3] P. N£val, Orthogonal polynomials of the real line associated with the weight
|z|® -exp(—|z|?), I., Acta. Math. Acad. Sci. Hung. 24 (1973), 335-342. (in Russian)

4] D. S. LuBINSKY, Gaussian quadrature, weights on the whole real line and even
entire functions with nonnegative even order derivatives, J. Appr. Theory 46 (1986),
297-313.

[5] B. Ja. LEVIN, Distribution of zeros of entire functions, Transl. Math. Monograph,
Vol. 5, Providence, Rhode Island, 1964.

[6] P. NEval and GEzA FREUD, Orthogonal Polynomials and Christoffel Functions,
J. Approzx. Theory 48 (1986), 3-167.

[7] A. L. LEVIN and D. S. LUBINSKY, Canonical products and the weights exp(—|z|%),
a > 1, wih applications, J. Approx. Theory 49 (1987), 149-169.

[8] P. NEVAI and V. ToTIK, Weighted polynominal inequalities, Constructive approz-
imation 2 (1986), 113-126.

[9] P. NEval and V. ToTik, Sharp Nikolskii inequalities with exponential weights,
Analysis Math. 13 (1987), 261-267.

1. JOO

DEPARTMENT OF MATHEMATICS
L. EOTVOS UNIVERSITY

1088 BUDAPEST

(Received March 9, 199/; revised July 10, 1995)



