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Weighted Nikolskǐı-type inequalities II

By I. JO�O (Budapest)

Abstract. In the paper is proved that the Nikolskǐı-type inequality (2) below is
sharp in the cases: p ≤ q; p > q, m > 1; p > q, 0 < m < q.

The present paper is a contribution to the investigations initiated by
P. Névai, V. Totik and others (see [8], [9] and [1] for further references).

Let
w(x) = wα(x) = |x|α/2 · exp(−|x|m), x ∈ R, m > 0.

Given p, q and m such that 0 < p, q ≤ ∞, m > 0 define the Nikolskǐı
constant Nn = Nn(m, p, q), n = 1, 2, . . . by

(1) Nn(m, p, q) =





n1/m(1/p−1/q) if p ≤ q,

n(1−1/m)(1/q−1/p) if p > q and m > 1,

(log(n + 1))1/q−1/p if p > q and m = 1,

1 if p > q and 0 < m < 1.

For 0 < p ≤ ∞ denote ‖f‖p the expression

‖f‖p =
(∫

|f(t)|pdt

)1/p

.

One of the results proved in [1] is the following.

Theorem ([1]). Suppose 0 < p, q ≤ ∞, α ≥ 0, m > 0. Then for any
polynomial pn ∈ Πn of degree ≤ n we have

(2) ‖pnwα‖p ≤ c ·Nn(m, p, q) · ‖pnwα‖q,

where c = c(m, p, q) is a positive constant independent of n, pn.
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The aim of the present note is to prove that this theorem is sharp in
the cases p ≤ q; p > q and m > 1; p > q and 0 < m < 1. We think that
this theorem is sharp also in the case of p > q and m = 1, but now we are
not able to prove it. Namely, we show that in the mentioned cases there
exist c∗ > 0 and polynomials {R∗n}∞n=1 with deg R∗n ≤ n such that

(3) ‖R∗nwα‖p ≥ c∗Nn(m, p, q) · ‖R∗nwα‖q.

for n = 1, 2, . . . .

For the proof of (3) we need some lemmas. First we prove estimates
for the Christoffel function of wα(x). For the definition and other results
see [2], Ch. 1.

Lemma 1 ([3], p. 338, Lemma (2.2)). Let

v(α)(x) =
{ |x|α, |x| < 1

0, |x| ≥ 1
α > −1,

and denote λn(v(α), ξ) the n-th Christoffel function of v(α)(x). Then

(4) λ(v(α), ξ) ³ n





n−2, 1− c4

n2
≤ ξ2 ≤ 1,

1
n
|ξ|α · (1− ξ2)

1
2 ,

c5

n2
≤ ξ2 ≤ 1− c4

n2
,

n−α−1, ξ2 ≤ c5

n2

where c4, c5 ∈ (0, 1) are arbitrary fixed numbers and concerns n.

Lemma 2. Let wα(x) be the function wα(x) = |x|α
2 exp(−|x|m) where

α/2 > −1, m > 0. Then

λn(wα, x) ≤(5)

K exp(−|x|m) ·
{ |x|α

2 · n 1
m−1, c7n

1
m−1 ≤ |x| ≤ c6n

1
m ,

n(α
2 +1)( 1

m−1), |x| ≤ c7n
1
m−1

further

a) in the case of m > 1:

λn(wα, x) ≥ K exp(−|x|m) ·
{ |x|α

2 · n 1
m−1, c7n

1
m−1 ≤ |x| ≤ c6n

1
m ,

n(α
2 +1)( 1

m−1), |x| ≤ c7n
1
m−1
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b) in case m = 1 we have

λn(wα, x) ≥ K exp(−|x|) ·





|x|α
2

log(n + 1)
,

c8

log(n + 1)
≤ |x| ≤ c6n,

[log(n + 1)]−
α
2−1, |x| ≤ c8

log(n + 1)
.

c) finally, in case 0 < m < 1:

λn(wα, x) ≥

K exp(−|x|m) ·





|x|α
2 +1−m

log(n + 1)
,

c9

(log(n + 1))
1
m

≤ |x| ≤ c6n
1
m ,

[log(n + 1)]−
α

2m− 1
m , |x| ≤ c9

(log(n + 1))
1
m

.

Proof. 1. First we prove the upper estimate. We need a suitable
polynominal P[n/2](x) ∈ Π[n/2] which satisfies the following condition:

(6) 0 < c3 ≤ P 2
[n/2](x) exp(−|x|m) ≤ c3, |x| ≤ c5n

1
m .

We will obtain the desired polynominal using Lubinsky’s function G de-
fined by

(7) G(x) = 1 +
∞∑

k=1

(em

2k

) 2k
m · 1√

k
· x2k

([4], (17)) which originates from a function introduced by Mittag–Leffler
cf. [5].

According to [4] Theorem 6 we have G(x) ³ exp(|x|m), x ∈ R. If we
choose rn to be the [n/4]-th partial sum of the power series in (7) then

(8) 0 < rn(x) ≤ c exp(|x|m), x ∈ R.

Moreover, examination of the remainder term G − rn shows that there
exists b0 > 0 (absolute constant) such that G(x) ≤ rn(x) + o(1) uniformly
for |x| ≤ b0n

1/m, n = 1, 2, . . . where lim
n→∞

o(1) = 0. Hence we have

(9) exp(|x|m) ≤ crn(x), |x| ≤ b0n
1/m.

Let P[n/2](x) be

P[n/2](x) = rn

(
x

m
√

2

)
.
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Then from (8) and (9) we get

0 < c exp(|x|m) ≤ P 2
[n/2](x) ≤ c exp(|x|m), |x| ≤ b0

m
√

2 n
1
m ,

i.e. P[n/2] satisfies (6). It is well known that

(10) λn(wα, x) = min
Tn−1∈Πn−1
Tn−1(x)=1

∞∫

−∞
|Tn−1(t)|2wα(t)dt.

Applying [6], Theorem 4.16.2, we obtain

(11) λn(wα, x) ≤

≤ c min
T[n/2]∈Π[n/2]
T[n/2](x)=1

−c1n1/m∫

−c1n1/m

|T[n/2](t)|2 · |P[n/2](t)/P[n/2](x)|2wα(t)dt.

Thus by (6) we have

(12)
λn(wα, x)

exp(−|x|m)
≤ c min

T[n−2]∈Π[n/2]
T[n/2](x)=1

c1n1/m∫

−c1n1/m

|T[n/2](t)|2 · |t|
α
2 dt,

where |x| ≤ b0
m
√

2 · n1/m.

By a change of variables s = t
c1n1/m we obtain from (12)

(13)

λn(wα, x)
exp(−|x|m)

≤ cn
1
m + α

2 · 1
m · λ[n/2]+1

(
v(α/2),

x

c1n1/m

)
,

|x| ≤ b0
m
√

2 n
1
m .

From (13) the desired (5) follows.

2. Now we prove the lower estimate.

a) The case m > 1. There exists a polynomial Pn(x) of degree at
most n for which

P 2
n ³ exp(−|x|m), |x| ≤ Bn

1
m ,

([7], Theorem 1). Using these polynomials we can prove the estimates.
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From (10)

λn(wα, x) ≥ k min
Tn−1∈Πn−1
Tn−1(x)=1

Bn1/m∫

−Bn1/m

|Tn−1(t)|2wα(t)dt

≥ k exp(|x|m) · min
Tn−1∈Πn−1
Tn−1(x)=1

Bn1/m∫

−Bn1/m

|Tn−1(t)2 · |Pn(t)/Pn(x)|2 · |t|α
2 dt

≥ k exp(|x|m) · min
T2n−1∈Π2n−1
T2n−1(x)=1

Bn1/m∫

−Bn1/m

|T2n−1(t)|2 · |t|α
2 dt

and so

(14)
λn(wα, x)

exp(−|x|m)
≥ kn

1
m + α

2 · 1
m · λ2n

(
v(α/2),

x

Bn1/m

)
, |x| ≤ Bn

1
m .

Now we prove that Lemma 2, (a) is valid for |x| ≤ cn1/m where c is an
arbitrary large constant. Since λn(wα, x) is a decreasing function of n we
have

λn(wα, x)
exp(−|x|m)

≥ λkn(wα, x)
exp(−|x|m)

≥ kn
1
m + α

2 · 1
m · λ2kn

(
v(α/2),

x

B(kn)1/m

)
,

|x| ≤ B(kn)1/m, where k is arbitrary fixed integer. According to (4)

λ2kn

(
v(α), ξ

)
³ λn

(
v(α), ξ

)
.

Consequently Lemma 2 (a) is valid for |x| ≤ cn1/m.
b) Case m = 1. The calculation is the same as in a) but we use

PLn[log(n+1)](x) instead of Pn(x). Here PLn[log(n+1)](x) is of degree at
most Ln[log(n + 1)] and satisfies

(15) P 2
Ln[log(n+1)](x) ³ exp(−|x|), |x| ≤ Bn,

see [7].
Hence we get

(16)
λn(wα, x)
exp(−|x|) ≥ k · n1+ α

2 · λcn log(n+1)

(
v(α/2),

x

Bn

)
, |x| ≤ Bn,
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further

λn(wα, x)
exp(−|x|) ≥

λkn(wα, x)
exp(−|x|) ≥ kn1+ α

2 · λcn log(n+1)

(
v(α/2),

x

Bkn

)
,

|x| ≤ Bkn,

where k is arbitrary fixed positive integer. Consequently Lemma 2 (b) is
valid for |x| ≤ cn, where c is an arbitrary large constant.

c) Case 0 < m < 1. In this case we have

λn(wα, x) ≥ min
Tn−1∈Πn−1
Tn−1(x)=1

Bn1/m∫

−Bn1/m

|Tn−1(t)|2wα(t)dt

= k min
Tn−1∈Πn−1
Tn−1(x)=1

B1n∫

−B1n

|Tn−1(|s|1/m)|2 · |s| α
2m + 1

m−1 · e−|s|ds

≥ k min
Tn/m∈Π n

m

Tn/m(|x|m)=1

B1n∫

−B1n

|Tn/m(s)|2 · |s| α
2m + 1

m−1 · e−|s|ds

= kλn/m

(
w α

m + 2
m−2, |x|m

)
.

Here we can use the result of Lemma 2, (b) and thus we get Lemma 2, (c).

Proof of the sharpness of Nikolskǐı-type inequality.
Case (i): p ≤ q.
We will obtain the polynomials R∗n from D. S. Lubinsky’s function

G defined by (7). According to [4] Theorem 6 G(x) ³ exp(|x|m), x ∈ R,
and thus if we define R∗n to be the n/2-th partial sum of the power series
in (17) then

(17) 0 < R∗n(x) ≤ K exp(|x|m), x ∈ R.

Moreover, a close inspection of the remainder term G−R∗n shows that there
exists ε > 0 such that G(x) ≤ R∗n(x) + o(1) uniformly for |x| ≤ εn1/m and
n = 1, 2, . . . where lim

n→∞
o(1) = 0. Hence we have

(18) exp(|x|m) ≤ K ·R∗n(x), |x| ≤ εn
1
m .

Let r > 0. Then we obtain

‖R∗nwα‖r ³
∥∥∥R∗nwαχ[−cn1/m,cn1/m]

∥∥∥
r
³

∥∥∥χ[−cn1/m,cn1/m]·vα

∥∥∥
r
³ n

α
2m + 1

mr ,
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where vα(x) = |x|α/2, n = 1, 2, . . . which proves (3) in case p ≤ q.
Case (ii): p > q and m > 1. Pick r0 > 0. We will prove (3) by

constructing a sequence of polynomials {R∗n}∞n=1, deg R∗n ≤ n, such that
for every fixed r > r0

(19) ‖R∗n · wα‖r ³ n((1/m)−1)r, n = 1, 2, . . . .

Given r0 > 0, let us choose an integer M > 0 such that r0 > M−1. Define
the weight function u as follows

u(x) = |x| α
2M · exp(−|x|m/M), x ∈ R,

and let {pn(u, x)}∞n=0 be the system of polynomials which is orthonormal
with respect to u. Define the function Kn(u) by the formula

Kn(u, x, y) =
n−1∑

k=0

pk(u, x) · pk(u, y).

and let N = max
{
1,

[
n

2M

]}
. Then

(20) R∗n :=
(

KN (u, x, x0)
KN (u, x0, x0)

)2M

is a polynomial of degree at most n, where x0 6= 0 is arbitrary fixed,
independent of n. We may assume that x0 > 0.

In what follows we will show hat {R∗n}∞n=1 satisfies (19). Using or-
thogonality it follows

‖R∗nwα‖1/M =





∫

R

K2
N (u, x, x0)

K2
N (u, x0, x0)

u(x)dx





M

= K−M
N (u, x0, x0).

According to the Lemma 2, (a) we obtain K−1
N (u, x0, x0) = O(N (1/m)−1).

Therefore we obtain

‖R∗nwα‖1/M ≤ Kn((1/m)−1)M

and by (2)

(21) ‖R∗nwα‖r ≤ Kn(1− 1
m )(M− 1

r ) · ‖R∗nwα‖1/M ≤ K · n((1/m)−1)r

holds for n = 1, 2, . . . . The next step is to show that there exists 0 < ε < 1
such that

(22) R∗n(x) ≥ 1
2
, |x− x0| ≤ εn(1/m)−1.
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By (20) (R∗n)
1

2M is a polynominal of degree at most n such that
(R∗n(x0))

1
2M = 1. Hence for |x− x0| ≤ εn(1/m)−1, n ≥ n0 = n0(x0,m),

∣∣∣1− (R∗n(x))
1

2M

∣∣∣ =

∣∣∣∣∣∣

x0∫

x

[
(R∗n(t))1/2M

]′
dt

∣∣∣∣∣∣

≤
√
|x− x0| ·





x0∫

x

∣∣∣∣
[
(R∗n(t))

1
2M

]′∣∣∣∣
2

dt





1
2

≤ k
√
|x− x0|





x0∫

x

∣∣∣∣
[
(R∗n(t))

1
2M

]′
·
√

u(t)
∣∣∣∣
2

dt





1
2

≤ k
√
|x− x0| ·

∥∥∥∥
[
(R∗n(t))

1
2M

]′
· √u

∥∥∥∥
2

.

Here, using a Markov–Bernstein type inequality [1], the right-hand side
can be estimated in terms of

Kn(1−(1/m))
√
|x− x0| ·

∥∥∥(R∗n)
1

2M
√

u
∥∥∥

2

= Kn(1−(1/m)) ·
√
|x− x0| ·K− 1

2
N (u, x0, x0) = K

√
|x− x0| · n

1−(1/m)
2 .

Hence we get
∣∣∣1− (R∗n(x))

1
2M

∣∣∣ = Kn
1−(1/m)

2 ·
√
|x− x0| ,

where |x−x0| ≤ εn(1/m)−1; from this (22) immediately follows. From (22)
we obtain

(23) Kn((1/m)−1)r ≤ ‖R∗nwα‖r, n = 1, 2, . . . .

From (21) and (23) the desired (19) follows.
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