Remark on the paper Á. Száz: Krabbe's generalized functions as convolution quotients

By E. GESZTELYI (Debrecen)

Let $\mathscr{I}=\langle \alpha,\beta\rangle$ be an arbitrary bounded or unbounded interval of the real line such that $0\in\mathscr{I}$. Let $\mathscr{L}(\mathscr{I})$ be the convolution algebra of locally Lebesgue-integrable complex-valued functions on \mathscr{I} . Thus the multiplication in $\mathscr{L}(\mathscr{I})$ is the convolution

$$(fg)(t) = \int_0^t f(t-\tau)g(\tau)d\tau \qquad (f,g \in \mathcal{L}(\mathcal{I});\ t \in \mathcal{I}),$$

while the addition and the multiplication by scalars are usually defined. Since $\mathcal{L}(\mathcal{I})$ contains elements which are not divisors of zero, $\mathcal{L}(\mathcal{I})$ has a quotient ring $Q(\mathcal{I})$.

Let $\mathcal{F}(\mathcal{I})$ be the set of functions $\varphi \in \mathcal{L}(\mathcal{I})$ which are infinitely differentiable on \mathcal{I} and such that $\varphi^{(k)}(0) = 0$ for every integer $k \ge 0$.

A mapping $F: \mathcal{F}(\mathcal{I}) \to \mathcal{F}(\mathcal{I})$ is called a multiplier operator of $\mathcal{F}(\mathcal{I})$ (see [1]) if

$$F(\phi\psi) = F(\phi)\psi$$

holds for all φ , $\psi \in \mathcal{F}(\mathcal{I})$. The set of all multiplier operators of $\mathcal{F}(\mathcal{I})$ will be denoted by $\mathcal{G}(\mathcal{I})$.

A. Szász has shown ([2]) (after the embedding of $\mathscr{G}(\mathcal{I})$ in $Q(\mathcal{I})$) that

$$\{\mathscr{L}(\mathscr{I}), s\} \subseteq \mathscr{G}(\mathscr{I})$$

where $\{\mathscr{L}(\mathscr{I}), s\}$ is the subring of $Q(\mathscr{I})$ generated by $\mathscr{L}(\mathscr{I})$ and $s = \frac{1}{\{1\}}$. He has the following question stated: Is the equality

$$\mathcal{G}(\mathcal{I}) = \{\mathcal{L}(\mathcal{I}), s\}$$

true? In the present note we give a negative answer for this question.

Obviously, it is sufficient to verify only in a special case the relation

$$\{\mathscr{L}(\mathscr{I}), s\} \subset \mathscr{G}(\mathscr{I}).$$

Next we shall suppose that $\mathcal{I} = [0, \infty)$ and in this case $Q(\mathcal{I})$ is the field of Mikusiński operators ([3]).

It should be remarked that for every element a of $\{\mathcal{L}(\mathcal{I}), s\}$ there exists a positive integer k and a continuous function f such that

$$a=s^k f \quad (f\in\mathscr{C}).$$

It is clear that the operator

$$b = \sum_{v=0}^{\infty} s^v e^{-vs}$$

cannot be written in the form (3). Consequently $b \notin \{\mathcal{L}(\mathcal{I}), s\}$. However $b \in \mathcal{G}(\mathcal{I})$. Let, namely, φ be an arbitrary element of $\mathcal{F}(\mathcal{I})$. We extend φ for $(-\infty, 0)$ as follows: $\varphi(t) = 0$ if t < 0. Then we obtain

$$b\varphi = \sum_{v=0}^{\infty} s^{v} e^{-vs} \varphi = \left\{ \sum_{v=0}^{\infty} \varphi^{(v)}(t-v) \right\} \in \mathscr{T}(\mathscr{I}).$$

Thus $b \in \mathcal{G}(\mathcal{I})$, since, by Theorem 5. of [2], b is an element of $\mathcal{G}(\mathcal{I})$ iff $b\phi \in \mathcal{T}(\mathcal{I})$ for all $\phi \in \mathcal{T}(\mathcal{I})$.

References

- [1] L. Máté, Multiplier operators and quotient algebra, Bull. Acad. Polonaise, 8, (1965), 523-526.
- [2] A. Szász, Kabbe's generalized functions as convolution quotients. In this journal

[3] J. MIKUSIŃSKI, Operational calculus, New York, 1959.

(Received November 8, 1971.)