Logarithmic mean function of entire functions defined
by Dirichlet series

By J. S. GUPTA and MANIJIT SINGH (Jammu)

1. Let E be the set of mapping f:C —C (C is the complex field) such that the
image under f of an element s€ C is

)= 2 a,e**» with

(1. 1) Jim sup 28

n—+os ;*n

n=D-c:+Go,

and /= + <= (¢! is the abscissa of convergence of the Dirichlet series defining f);
N is the set of natural numbers 0, 1,2, ..., (1,:n€N) is a strictly increasing un-
bounded sequence of nonnegative reals, s = o+it, o, 1€ R (R is the field of reals),
and {(a,:n€ N) is a sequence in C. Since the Dirichlet series defining / converges for
each complex s, f is an entire function. Also, since D <= + ==, we have ([1], p. 168)
6l = + < (g7 is the abscissa of absolute convergence of the Dirichlet series defining /),
and that fis bounded on each vertical line 0 =0,.

In 1914, HARDY ([2], 270) defined the mean value of the modulus of an analytic
function and studied some of its properties. This lead to various persons to study
the mean values of entire functions and their derivatives. Although all sorts of
means of entire functions were studied but the authors are not aware if any body
has ever studied the logarithmic mean of entire functions defined by Dirichlet series.
We, therefore, in this paper define the logarithmic mean function of an entire function
f€ E and study some of its properties.

Definition 1: For any f€E, we define its logarithmic mean function L as

: S i
(1.2) L(o,f) = lim ﬁ_! log | f(e+it)|dt, Yo<o..

T—++eo

Following theorems throw some light on the properties of the logarithmic mean func-
tion L of entire functions f€ E.

Theorem 1. If L is the logarithmic mean function of an entire function f¢E,
then L is a steadily increasing function and log L is a convex function of o.

PRrOOF. In order to prove this theorem we shall follow the method of TiTcH-
MARSH ([3], p. 174). Let.o,, 6,, 63 € Rbe such that 0<0; <0, <0,. Also let #:R~C
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and ¥:C —C be two functions defined, respectively, as follows:

log | (o2 +it5)|

SRS i)

V1,€R,

P A '
¥ =] = it,)P(1,)dt,, (.
(s) T:TWZT _!f(s'ﬂz) (1;)dt, Vse

It is clear from the definition of ¥ that it is analytic in the half plane Re (s5)=0,,
and that |¥ | attains its supremum on the boundary Re (s)=03, say at s = a5 +it;.

Hence
L(6s,f) = ¥Y(62) = |¥Y(03+it3)| = L(03,f),

which shows that L increases steadily with o.
We now choose « so that e*”' L(o,.f)=e"*L(05,f). Then

e2L(0,,f) = e":¥(0,) = sup  [e* ¥ (0,)| = "1 |¥(0,)| = €1 L(0,,f),
o =Re(g)=a,
whence

e:L(0,,f) = e L(0,,f),

L@2.f)
"’g[L( a7

which gives,

(1.3)

= a(o, —0,).

Since, by definition, « = 0_— = EE 3’?; it follows, from (1. 3), that
5 3 Ty,
L(3,/) 0'2 [L(O'asf)
1 1 — ]
°g[L(a. 1) il V7T
or
log L(2.f) = 7= o o logL(@1./)+ -—;- T log L(o3, /),

which proves the convexity of log L.

Theorem 2. If L is the logarithmic mean function of an entire function f€E
of Ritt order o and lower order i, M is the supremum function of | f| defined as

M(o,f) = sup|fla+it), o<dal,
tER

then

. sup logL(s,f) _o
19 ,!.IT@ inf o T

But if [ is of nonzero finite Ritt order o, type t and lover type v, then

. . gy Log(af)
(1.5) lim inf

G-+ oo "
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Proor. We have, from (1. 2),

r
(1.6) L(o,f) = lim ilf [ log| fo+it)|di = log M(a, /).
T+ -y
Therefore
. sup L(o.f) _ .. sup logM(as,f)
(1.7) i g = g o —F Sl
and

(1.8) lim SUP logl(e.f) _ .. sup log; M(s,f)
NS | o PR || | { o
where log, x=loglog x. The result in (1.4) and (1. 5) now follow from (1. 8) and

(1. 7), respectively, since ([4], p. 77),

lim S loga M(e,f) _e
v mf c A

and

sup log M(a,f) =

inf et’ i Vv s

2. Let f€ E be an entire function of nonzero finite Ritt order ¢ whose loga-

rithmic mean function is L. Since log L is an increasing convex function of o, we
may write

lim

@.1) log L(0.f) = log (0, )+ [ V(x,f)dx,
where V is a real valued indefinitely increasing function of ¢. We let
.. sup V(e,f) «
25 ol.!T,, o A SIS
and
im Splogl(e.f) _»p
(2.3) o NV el

where the constants «, f§, p, g € R% U {0} (R% is the set of extended positive reals),
and prove the following results.

Theorem 3. If L is the logarithmic mean function of an entire function fcE
of nonzero finite Ritt order o, and u, B, p, q are the constants defined as in (2.2) and
(2. 3), then

(2.4) B=eq=eop=n,
2.5) op= 2= p,
(2.6) quﬁ[l+log%]§q
and

2.7 24+ 0q = eop.
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ProorF. We choose a k¢ R, U {0} and get, from (2. 1),

k
k . e
2.8 lo L[o’+—, ]=OI+ - V(x, f)dx.
(2.8) g i ()(%fcf](f)
We first suppose that f€R,. Then, from (2. 2), we get
AL
pro B—e,
for all e=a,(e,f) and for any £¢€ R, ; whence, in view of (2. 8),
k
e*iogL[o+—,f]
0 D=4 k V(e.f)
-9 e — = 0+ == (- o)+ ==
Taking inferior limits of both sides in (2. 9), as ¢ tends to plus infinity, we get
Bk
eq=—+—p,
q Q+Qﬁ

this, in turn, gives, for k=0,

(2. 10) 09=f,

which also holds when f=0. If § were infinite, the above argument, with an arbitrarily
large number instead of f—e, gives ¢ = +<==. Thus (2. 10) holds when f < R% U {0}.
Further, from (2. 2), we get, for any ¢€R,,

2.11) V(o,f) < e (x+¢), Yo = 64(e,f).
This estimate for ¥ makes (2. 1) to yield

log L(o, f
L820S) - ooy + 222 (1-0),

whence

2.12) op = o.

Combining (2. 10) and (2. 12), since gp=pgq, we get (2. 4).
In order to establish (2. 5), we take superior limits, as ¢ tends to plus infinity,
of both sides in (2.9), and get

ép= b8 ’
e
which gives, for k = l—%,
(2.13) epa%z“”%ﬁ;

the last inequality in (2. 13) follows from the fact that x=0 = e*=ex.
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Further, from (2.8) and (2. 11), we get

k k
logL[a+fé-,f] - 0(1)+a}£(e‘”—e"’°)+5 V[a+§,f],

or

e“logL[0‘+§sf] z+a kV[”%’f]
e = D= (e

Taking inferior limits, as ¢ tends to plus infinity, of both sides, we get

S o+ kfe*
Q ?
which, on taking k=Ilog (2/p), gives
(2.14) 0q = ﬁ[l +log %] =a,

since 1-+log (2/B) = exp (log («/B)). This proves (2. 6).
To prove (2. 7), we note that

1
ob—

e
Ve./)=e [ V(x.f)ax,

since V is a positive indefinitely increasing function of ¢. Adding o log L(a, f)
on both sides of the above relation and using (2. 1) we get

elog L(a,f)+V(e,f) = QlogL[a+%,f].

Dividing throughout by €% and proceeding to limits, we get (2. 7). This completes
the proof of the theorem.

Remark. Since the function e* —ex attains its minimum for x=1, in the relation
(2. 5) actually 3<% eP/ if 3B, and in relation (2. 6) B (l+log %) <o if a=p.

Thus the equality in the relations (2. 5) and (2. 6) will occur only if 2=p. More-
over, from (2. 5),

o
— oflz =
e =
" ep

or
(2.15) o= egp.
A comparison of (2. 7) and (2. 15) shows that (2. 7) is a refinement of (2. 15).

. D
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Theorem 4. If fc E is an entire function of nonzero finite Ritt order o, then

lim V(a:f—)- exists if, and only if, lim M_(o‘_,fl exists, in which case
g+ oo e@ o~ +eoo eW

.. Ve f) .. logL(s,f)

Ve, f) log L(a, f)

Proor. That if lim exists, then lim exists follows from

g+ oo epa g+ oo eoc
(2. 4). We, therefore, suppose that

: log L(o,
First let p€ R, ; then, for any ¢é€ R, and o=>0,(¢),
(2.18) (p—e)e?® < logL(a,f) <= (p+c)e®.
Hence, for any 4€]0, 1[, we have
a+d a+d a
[ vx.fydx= [ V(x.f)dx— [ V(x,f)dx =log L(c+3d,f)—logL(s,f) <
a oy ag

< (p+e)eC*de—(p—g)e” =
= p(e®—1)e?+g(e+1)e” = p(dg+---)e’®+&(2+ 0o + -+ )e™.
Therefore, since ¥ is an increasing function of &,

a+d

Vo, /)= [ V(x.f)dx < p(Sg+ )€™ +8(2 + 50+ ---)e™.
Since ¢ and o are arbitrary, it follows that

' ; V(e,f)
&1 i sup =g

Proceeding in a similar way we easily get

= op.

a

[ V(. f)dx = p(dog— )" —e(2— g + ) e,

o—4d

for any e€R,, 0=>0,(¢) and any 4€]0, 1.
Or, since V is an increasing function of o,

V@)= [ Vinf)dx = poo—)et—e@—dg+ e,

a—d

whence, since ¢, § are arbitrary,

(2.20) lim inf% = gp.

= 4 oo
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Thus, for p€ R, the relations (2. 19) and (2. 20) give us
Vio.f) _

(2.21) bn — op.
If p=0, then (2. 19) gives |
tim Y& _

G == + oo e”

and if p = + ==, then taking an arbitrary large number M in place of (p —¢) and pro-
ceeding as above we get

g—+ + oo

Vie,/)

Thus in each case lim v exists.

g+

The equality (2. 16) follows from (2. 17) and (2. 21).
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