On a class of associative functions

By C. KIMBERLING (Evansville, Ind.)

Introduction

Since their introduction by MENGER in 1942, certain associative functions cal-
led r-norms have been studied not only in connection with their original applica-
tion to probabilistic metric spaces, but also, largely through the work of SCHWEIZER
and SKLAR, in connection with semigroup theory and functional equations.

In Section 1 of this paper*), we record results of an elementary nature, illustrat-
ing the strength of the associativity property in determining values assumed by
r-norms. Section 2 consists of similar results, arising from solutions to certain con-
ditionings of the Schroder functional equation, and we obtain representations for
certain z-norms. In Section 3 an inversion operator is introduced into the class of
functions defined on the unit square, and we are interested mainly in characterizing
those #-norms whose inversions are f-norms. Again, we obtain representations for
certain classes of 7-norms.

We continue this introduction with definitions and preliminary results:

I Definition. A triangle norm (briefly, a t-norm) is a two-place function 7 from
the closed unit square [0, 1]X[0, 1] (henceforth written I?) to the closed unit interval
[0, 1] which satisfies the following conditions:

1) 7(0,0)=0, T(a, 1)=a (Boundary conditions)

it) T(a, b)=T(c, d) whenever a=c and b=d (Monotonicity)

i) T(a, b)=T(b, a) (Symmetry)

iv) T(T(a, b), ¢)=T(a, T(b, ¢)) (Associativity)

la Definition. A t-norm is continuous if it is continuous in each place.

1b Definition. A t-norm is strict if it is continuous and, over the interior of 72,
strictly increasing in each place.

*) This work was supported in part by the National Science Foundation under Grant GY
5595 and in part by the University of Evansville.
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lc Definitions. We define certain basic t-norms 7., 7,,, Prod, and Min, as
follows:

a b=1
T.,(a,b)=1b, a=1
0, otherwise
T,(a,b) =max(a+b—1,0)
Prod (a, b) = ab
A 5 a, a=b
wd Lk T

Of these, only Prod is a strict -norm.
By part iv) of Definition 1, we can write T'(a, b, ¢) for the common value

T(T(a, b), ¢)=T(a, T(b, c)),
and, in general, for any points x,, ..., x, in [0, 1], we define
T(®ys a0 ) = T2y, T(Zs, 200 X))
inductively. In particular, we define here the functions
il =TU,.%)
T Axyut T 0 BE. B Lol
nplaces
If 7 is such that 7, has an inverse (e.g.. when T is strict), we define
T =Y % e

1d Definition. A t-norm T is archimedean if, for every x<(0, 1), lim T,(x)=0.

n-—+eo

To prepare for the next definition we remark first that, associated with each
t-norm is an abelian semigroup ([0, 1], 7). That is, an associative, commutative
binary operation T is defined for all @, b€[0, 1] by the rule aTh=T(a, b). Clearly
one endpoint, 0, is an annihilator, and the other endpoint, 1, is an identity. Such a
semigroup is called an *““(I)-semigroup” in [5] and a ““thread™ in [8].

If Tis a r-norm and [4, 2"] is a closed subinterval of [0, 1], then T can be “shrunk™
to a function T; defined on [4, A"]X[4, A"] by

b o X—4 y—4
T,(x,y) = A+(4 “")T[,i'-'z” 1'—2]'

Then ([4, A'], T) is an (I)-semigroup. The motivation for the following definition is
that, given a collection {77} of r-norms and a partition

{[;-a ’ Z;I}aE A
{425 Aal}ac 4 ups

of [0, 1], we can in many ways piece derived (I)-semigroups

([(Zas 2a). T5,)

together to form a t-norm.
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le Definition ([4], p. 206). Let A be a totally ordered set and {S,, o },c, 2
collection of palrw1se disjoint semigroups (S,, ¢,) indexed by A. Then the ordinal
sum of {(S,. 6,)}ac4 is the set |J S, under the following binary operation o

acA
xo,y if for some a< A, both x and y liein S,
xXopy = { X if xéS,and ye S, forsomea,bcA,a<b

y if xeS§,and ye S, forsomea, bc A, a=b.

It is immediate that (S, o) is a semigroup.
Suppose now that a -norm 7 is known to be an ordinal sum of (I)-semigroups
and one-point semigroups. Let S be the set of idempotents of 7. That is,

= {x€[0, 1]: T3 (x) = x}.

If S is not nowhere dense, let Q be the union of all open intervals covered by the
closure of S. Define S; = S Q. Then if 7, (x)<x for some x € Q, let x" € (7, (x), x) "
MS,. Then T,(x")=x"=T,(x), contrary to the monotonicity property of r-norms,
since x"<x. This shows that for x€Q, T,(x)=x, hence §,=Q and Q < S. We may
therefore represent S as a union of an open set Q with a nowhere dense set Q”. It
follows that, given a representation

{([Aa! j';]- TA.)}GEA

for T, in which the underlying sets [4,, A]] are intervals or singletons 1,=4;, we
may give a clearer representation (however, with regard to the disjointness of the
semigroups in Definition le, we here ignore common endpoints of intervals):

{7, 4], To)}ien U{(Q', Mim)),

where N is a countable indexing set (each interval contains in its interior a rational
number not contained in any other of the intervals) and Q" is a nowhere dense set.
Q’ can be, as in the Cantor set, uncountable.

Clearly, from Definition le, over that portion of /2 lying outside the diagonalized
subsquares [4;, 4/]1X[4;, 4], T coincides with Min.

We wish next to quote ([4], p. 206), where a theorem originating in ([5], p. 130)
is phrased in terms of f-norms. First we need the definition given in [6] for an archi-
medean semigroup. Let J be a closed interval [a, b] of the extended real line and let
S:JXJ — J be an associative function satisfying the following conditions: (1) S is
continuous, (2) S is nondecreasing in each place, (3) the endpoint b is a left unit,

e., S(b,x)=x for all x¢J, and (4) for all x€(a, b), S(x, x)=x. Then the semi-
group (J, §) is archimedean. The theorem just mentioned above states, “Every
continuous #-norm is either the r-norm Min, or is an ordinal sum of archimedean
semigroups and one-point semigroups.”

This theorem generalizes the theorem of Crimescu [2] on the ordinal sum of
two semigroups, which was applied in [7] to 7-norms. Our principal interest here,
however, is that, by this theorem, the discussion just preceding it and the representa-
tion obtained there now apply to all continuous #-norms.

2 Theorem (AczfL, [6], p. 170). If T is a strict t-norm, then there exists a func-
tion F, defined, continuous, and strictly decreasing on [0, =), with F(0)=1 and
lim F(x)=0, such that for every (a, b)<(0, 1]1:X(0, 1],

x>0
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T(a, b) = F(F"‘(a)+F"1(b)).
From
T(0,5) = lingF(F“(x)-i—F“(b)) =T®»,0)=0,

we see that the function F, henceforth called a generator for T, completely deter-
mines 7.

2a Theorem ([6), p. 171). If T is a strict t-norm with generators F, and F,,
then there exists a real number 2.#0 such that F,(x)=F,(Ax), x€[0, =). Conversely,
if Fis any generator of T and /=0, then F(Ax) defines a generator for T.

2b Theorem ([6], p. 171). If F is a function defined, continuous, and strictly
decreasing on [0, =), with F(0)=1 and lim F(x)=0, then the two-place function T

defined on (0, 11X(0, 1] by ek
T(a, b) = F(F~1(a)+ F- (b))

and extended to all of 1* by continuity, is a strict t-norm.

1. Elementary results

3 Lemma. Let T be a t-norm. If the values of T(x,y) are determined for fixed
x<(0, 1) and all y € (0, x), then the values of T(T,(x), y) are determined for all y<[0, 1],
=2 a0

PrOOF. Under the hypothesis, the values of 7(x, T(x, y)), and hence by associa-
tivity, those of 7(7(x, x), ), are known for all y€[0, 1]. Suppose, for arbitrary
n=>=2, that the values of 7(7,_,(x), ) are known for all y€[0, 1]. Then the lemma
follows inductively from

T(T,(x), y) = T(x, T(T,_, (x, »)))-

4 Theorem. Let T be a continuous t-norm. If the values of T(x, y) are determined
in a region x,=x=x,, 0=y=x, then the values of T(x,y) are determined in each
region

[T,(x,), T,(x,)] X[0, 1], =2 3

Moreover, if T is also archimedean and T,(x,)=Xx,, then the values of T(x,y) are
determined for 0=x=x,, 0=y=1.

PRrROOF. Let n=2. Since T is continuous, T, is continuous. Thus, if
x"€[Ty(xy), Tu(x2)],
there must exist x¢€[x,, x,] for which 7,(x)=x". Then
T(x',y) = T(T,(x), »),

so that by Lemma 3. 7(x", y) is determined for all y€[0, 1].
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Now suppose that, in addition to being continuous, 7" is archimedean and
satisfies 7, (x,)=x,. Then the strip

[T2(xy), T2(x3)]1X[0, 1]

[x1, %2]X [0, 1].
For arbitrary n=2, suppose the strip
[Ta(x1), T (x2)]1X[0, 1]

[Tu-1(x1), Ty (x2)] X [0, 1].
Then T,(x,)=T,_,(x,), so that
Tn+l(x2) = T(Tn(x2)’ xl) = T(Tu-l(xl)) = Tn(xl)'

meets the strip

meets the strip

Thus, the strips
[Tn+ 1 (xl)’ Tn+ 1 (.\.’2)] X [0’ l]

and [T,(x,), T,(x,)] X[0, 1] meet. Since
lim T,(x,) = 0,

n==o0

[Tn(xl)! Tn(xZ)]X[()! 1]; ”=2, 3, ‘e

the strips

cover [0, x,]1X[0, 1].

5 Theorem. Let D be a subset of the unit square 1* such that, for each 5 (0, 1),
there exists x5€(0, 1) such that for each x=x;, {x}X(0,d) < D. Let T be an archi-
medean and continuous t-norm. Then T is determined by its values in D.

Proor. Let x;, 6 €(0, 1). By the lemma immediately below, there exist x € (xg, 1)
and n such that T,(x)=x, and {x}Xx[0,d) = D. Then

T(x()&y) — T(Tn(x)e }’) e T(-x9 T(Tn-‘l(x).! y))
is determined for all y satisfying
0= T(T,-1(x),») < é,

hence certainly for all y€[0, d). Since x, and é were arbitrarily chosen, and since the
values of T(x,, 1) are prescribed, the proof is complete.

PROOF of the lemma. For each positive integer n, define x, by 7,(x,)=x,. The
existence of this x, is ascertained by applying the intermediate value theorem to the
continuous function 7,. Now lim x,=1, for if this limit were some ¢<1, then for

all n, T,(x,)=T,(2), so that

X—+oo

Xo = lim T,(x,) = lim T,(¢) = 0.
contrary to x,€(0, 1). Thus if x; is chosen so that for x€[x;, 1], {x}x(0, ) < D,
then we can choose n so large that x;<x,<1 and have {x,}x(0,d)  D.
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6 Theorem. Let x, (0, 1) and let N be a positive integer. Then every strict t-norm
T is determined by its values T,(x), x€[x,, 1], n = N, N+1, ....

Proor. Suppose T,(x) is known for all x€[x,,1], n = N,N+1,.... Let f be
that generator for 7 which satisfies f(1)=x,. (If F is any generator for 7, then
F(r)=x, for some r=0; our f is then the generator given by f(x)=F(rx).)

Now
T,(x) =f(f~"'(x) =f(m), n=12,...
Let x, be that number which satisfies Ty(x,)=x,. Then since
S(Nf~1(x2) = xy = f(1),

we have f-1(x;) = T:r’ so that

T,,(x;):f(nf"(x;)):f[%], L P

Suppose for arbitrary A=1 that x,_, has been defined so that

T,,(x,‘_,)=f[%], n=1,2:...

Let x, be that number which satisfies Ty(x;) =x;_,. Then
1
f(Nf“(xk)) = Xk-1 =f[W]

and

Hence f~1(x) = N—kl:l—

T,(x) = F(nf~'(x) =f[Nf_ 1-], TI, RO

Thus, inductively, we obtain a sequence x,, x,, ... with lim x,=1,and fork=1. 2, ...,

X =00

we find that the values f(—"———] are determined for n=0, 1, ... . The set

Nk=1
n can
{—Nk—_l—:n, k are positive mtegers}
is dense in [0, =), so that the continuous function fis determined on [0, ==); hence T
is determined.

7 Theorem. For any t-norm T, the functions T,, n=2,3, ..., are determined by
the functions T,, p=2,3,5,7, 11, ... . Thus every strict t-norm T is determined by the
Junctions T,, p prime.

PrOOF. For the first assertion, let
n = pyps ... par
be the prime factorization for n, and suppose that 7, has been shown to be deter-

mined for each k<n. Then the desired result follows from 7, = T, o T;}.
The second assertion now follows from Theorem 6.
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2. Determinations of values by Schrider’s equation

Here we deal with the relationships between certain prescribed functions g and
the class of strict ~-norms 7T such that ¢ =T, for some n. In each of the theorems the
method consists of recognizing a Schroder functional equation of a type solved in
[3] and interpreting the solution in terms of f-norms.

In this section, we denote by g* the k™ iterate of g. given by ¢' =g and

q* = gog*-4, Km2 3,0
The inverse (¢*)~! is written ¢~*. Similarly, we employ the symbols

.fks k=0- i], :tZ,....

Also we write, for example, fogoh(x) instead of f(g(h(x))), for expressions of
lengthy functional compositions.

8 Hypothesis. Let s€(0, 1). Let f be a continuous strictly increasing function
from [0, =) into [0, ==) such that f(0)=0 and f(x)<=x for all x&(0, =).

8a Theorem ([3], p. 29). Assume Hypothesis 8. Then every function @ defined
on an interval [ f(x,), Xo], Xo € (0, =), and fulfilling the condition @( f(x,))=5@(x,)
can be uniquely extended to a solution ¢ of the Schréder equation ¢( f(x))=s¢(x)
in [0, ). If lim f(x)=-<=, then ¢ is given by

X =00

Sﬁ@(.f_k{x))a xe(.fk+l(x0)a,fi(x0)a k:D, = l-,- Iza
afx) = {0. x=0

where f* = fof*-1, k=1,2,... ,and f*=(f"%""1, k=(—-1,—, —2,...). Moreover,
if @ is continuous, then ¢ is continuous.

8b Theorem ([3], p. 35). The function ¢ in Theorem 8a is strictly monotonic
on [0, ==).

8¢ Theorem ([3], p. 36). Assume Hypothesis 8. Then every solution ¢ to the
Schroder equation ¢( f(x))=s@(x) which is strictly monotonic in a (right) neighborhood
of 0 is strictly monotonic in the whole of [0, ).

8d Theorem ([3], p. 36). Assume Hypothesis 8, and, in addition, assume for
some p=2 that € CP, i.e., f has a continuous p™ order derivative over [0, =). Further
assume that f'(0+) = s, and that f"(x)=0 for all x¢(0, =). Then for every real num-
ber d there exists one and only one CP solution ¢ to the equation ¢( f(x))=s¢(x)
in [0, ==) which fulfills the condition @' (0)=d. This solution is given by the formula

@(x) = dlim s~*f*(x) (f* as in Theorem 8a).
k—=oca

8e Theorem ([3], p. 40). Assume Hypothesis 8, and, in addition, assume that

Iim f(x)=s (f, being strictly increasing, is differentiable almost everywhere) and
x—-0+
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that f is convex in (0, ). Then the Schrider equation ¢S|f (x))=s5¢(x) possesses a
unique one-parameter family of convex solutions in (0, ==). These solutions are given by

o (x) = d lim ;:g)) : (f* as in Theorem 8a)
k-soo

where ¢ is an arbitrary fixed point from (0, =), and d is an arbitrary constant.

9a Lemma. Let the hypothesis of Theorem 9 be assumed, and let h(y) = Jl;— B

Then the function
J(%) = hog~toh~'(x)

satisfies the conditions on the function f of Theorem 8a. If G is a solution to the equa-
tion

G(f) = -G, x€[0, =),
obtained as an extension of a function G defined, continuous, and strictly increasing on
an interval as in Theorem 8a, then the function
F(x)=h"'(G'(x))
is a continuous, strictly decreasing solution to our equation
g(x) = F(nF~'(x)),  x€[0, =).

PROOF. It is easy to verify that f(x) satisfies the conditions on the function f of
Theorem 8a, and we omit this verification. (A more general proposition is proved in
Lemma 11c.) For the second assertion, we have

Gohog 'oh™' () = - G(x),  XE[0, =)
Gohog='(x) = -f—r-Goh(x), xe(0, 1]

Hg™ () = HE,  x€[0,1}, Hx) = G(h).

Now by Theorem 8b, G is strictly increasing. It follows that H is strictly decreasing.
Thus, upon inverting, we obtain
H™'(nx) = q(H™'(x)), x¢€[0, <), H(x) = h~(G~1(x))
and see that H~! has the desired properties.
9b Lemma. Let f(x) be as in Lemma 9a. Then
F4x) = Bog™"ok~2(x), k=0,+1, +2, ..., x€[0, «).

9 Theorem. Suppose q is a continuous, strictly increasing function on [0, 1] with
q(0)=0, g(1)=1, and q(x)=x for all x€(0,1). Let x,€(0, =), and suppose that

. ; g f . Xo :
for some n=2, F is a continuous, strictly decreasing function from [— : .\‘0] into
n
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(0, 1) satisfying F (x,)=q [F [%]] Then F has a unique extension F to [0, =) satisfy-
ing q(y)=F(nF='(y)) for all yc(0, 1]. This function is given by

~k(F (n* o Xl £ 4 o
Fx) = q~*(F (n*x)) for xe[nkﬂ, n,‘], k=0, +1, ...
1 for x=0,

and is a generator, If T is the t-norm generated by F, then q=T,.

- : : ; . b
PROOF. Suppose F is a continuous, strictly decreasing function on [TO xO]

roa- (2]
for some x,€(0, ==) and n=2. Define
G(x) =F-toh-1(x),

with /4 as in Lemma 9a. First we shall argue that G is a continuous, strictly increas-
ing function on [hog='oh='(y,), ¥ol. where y, = hoF(x,): Since the domain of

Fis [% .\'0], that of F~! is [F(xo),? ( :"]] Hence the domain of F~loh~! is

[koF[-i:—]. hop(xo)]._

[th[f-‘l], hcqu[’Fo-]],
n n
[hog='oh='(yo), Yol

where y, = ho [qu’ (%]] = hoF(x,).

Clearly, G is continuous and strictly increasing.
Next, we shall see that G satisfies

1
G(hog='oh™'(yo)) = - G(yo):

into (0, 1) satisfying

which we can re-write as

hence as

qof_'[%] = F(xo)
h='(yo) = F(nF-*oq="'oh="(y,))
%F—loh—l(yo) - Foq"Oh'l(}’n)

%—G(yo) =F-loh~'ohogq~toh~1(y,) = G(koq“oh‘”‘(yo)).
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One more item must be checked before we can apply Theorem 8a, namely that
lim f(x)=-oo, but this follows immediately from lim ¢~ (x)=0.

X0 x-=0

Now, Theorem 8a and Theorem 8b apply. Let G be the unique continuous,
strictly increasing extension of G to [0, ==) satisfying

1
G(hog™'oh™' () = . G(»)
for all y€[0, ==). Then G is given by

Ke=Qy 1,42, ...

k
[;ll—] G(f*(y)) for ye(/** (¥o0) f*(¥0)),
G(y) =
0 for y=0,

where f(y) = hogoh='(y). Applying Lemma 9b,

k
[!lf_] G(hogtoh™'(y)) for yelhoq™*""oh™ (yo). hog= o h™ " (yo)l,

k=0, £1, +3, ..
0 for y=0.

Equivalently, for we (0, 1), we have

k
[%] G(hog*(w)) for h(w)e[h(g=*~" (wo)) h(q~*(wo))],

wo=h"1(yo), k=0, £1, +2, ...
0 for w=1,

so that for F='(»)=G(h(y)) and F~'(y)=G(h(y)), we have

G =

G(h(w)) =

k
[ f,] F-1(*) for welg™wo), 4~ (wo)l

-1 =
e k=0, +1, +2,...
0 for w=1.
Now for we(0, 1), the substitution w= F(x) leads to
(1) wx = F-F(F(x))), <k=0,+1,+2,..,

hence to F(x)=q~*(F(#*x)), k=0, £1, £2,....
It remains to be seen that for we[g=*(wo), g% ' (wy)], we have

xé[;;fl ) ':f] :From F(x) = w,
we have
x€[F-'eq~*oh™'(yo), F~ogq~*"1oh™'(y,)).
That is,
x€[F~1oq*oF(xo), F-'ogq~*'oF (x,)].
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By equation (1) above, this last interval is just

Xo Xo
[;,x—rn’“,,_t]* k=0,+1,+2,....

The method of proof shows that the extension F of F is unique, with respect
to the required properties, since this uniqueness is equivalent to that of the function
@ in Theorem 8a.

To ascertain that Fis a generator, we must see that lim F(x)=0: We have for

X-—=00

each integer k and each x,=0,

X, s
F[f_r"‘l] = q~*(F(xo)),
so that what we wish to establish is that

lim F[ ]— llmq (F(xp)) = 0.
Rttt

This must be the case, since g (x)<x for all x€(0, 1): otherwise let x.. be the supposed
positive limit point of the (decreasing) sequence g*(F(x,)). Since g is continuous,

a(x2) = q(lim ¢*(F(xo)) = lim ¢+ (F(xo) = -,

a contradiction.
The last statement in the theorem is a re-wording of the Schréder equation
q(x)=F(nF~'(x)), sinceT,(x)=F(nF~"'(x)).

9¢ Corollary. Let ¢ be a continuous strictly increasing function on [0, 1] with
q(0)=0, g(1)=1, and g(x)<=x for all x€(0, 1). Then for any positive integer n=2,
there exist strict ~-norms 7 such that 7, =gq.

PRrOOF. Let such ¢ and n be given. Let x,€(0, ==). Let y be any number in (0, 1).

. : " X
Then g(y) =y, and we may define in many ways a continuous function F on [—;ﬁ : xo] ;

strictly decreasing from y=F [%) to q(»)=q (F (;—o-n=F (x,). By Theorem 9,
any such F can be extended to a generator F whose r-norm 7 satisfies 7,=q.
If F, and F, are two distinct functions on [x_: xo] obtained as above, then

clearly F, cannot be related to F, by F,(x)=F,(ix) for any constant A. Thus by
Theorem 2a, the extensions F, and F, generate distinct strict 7-norms.

The corollary shows, for example, that many r-norms T coincide with Prod
over the diagonal {(x, x):x€[0, 1]} of 72, i.e., T,(x)=x? for many t-norms 7.

More generally, for any strict -norm 7 and n=2, a large class of strict -norms
T’ satisfy T,=T,. We shall show, however, that under certain conditions on the
prescribed function g, there is one and only one strict -norm of some large class
(e.g., having generator in C?) which satisfies 7, =gq.

10a Lemma. Assume the hypothesis of Theorem 10. Let h be as in Lemma 9a,
and let f = hoq='oh~"'. This function satisfies the conditions on the function f of
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Theorem 8d with s = —i— and if G is that solution to the equation G( f(x)) = %G(x),

x€[0, =) with G'(0)=d#0, obtained by Theorem 8d, then the function F given by
F(x)=h='(G~"(x)) is that (C?, if q € C?) solution to our equation q(x)=F(nF~'(x))
which satisfies F'(0)= ——‘l—f-.

PrOOF. The first assertion can be routinely verified, and its proof is included

in that of Lemma Ilc. In proving Lemma 9a, we already showed that A=!(G~*(x))
solves the equation g(x)=F(nF~'(x)). If € CP, then by Theorem 8d, G<C?, so

that FeCP. If G'(0)=d, it is easily checked that F’(0)=—~‘1?. Finally, it is clear

that the uniqueness of F is equivalent to that of G, the latter being given by Theo-
rem 8d.

10b Lemma. Suppose {G.}, -, is a sequence of strictty increasing functions from
[0, ==) onto [0, =) which converges pointwise to G,. Then {Gi '},-, converges point-
wise to Gg'.

10c Lemma. Assume the hypothesis of Theorem 10. Let d=0. Define G, (x) =
=dn*hog=%ch='(x) for k=1,2, ... and G,(x) = lim G.(x). Then the sequence

k—+oo
{G,}s = o fulfills the hypothesis of Lemma 10b.
PROOF. Letting f be as in Lemma 10a, we have

-k
Gu(x) = d[%] )

by Lemma 9b. By Theorem 8d, lim G;(x) exists for all x£[0, =) and defines there a

koo

solution ¢ =G, to the Schroder equation

(/) = - ().

Since d=0, each G, is easily seen to be strictly increasing and onto. To ascertain
that these two properties hold also for G,, we appeal first to Theorem 8c, which
states that if G, is strictly increasing in a (right) neighborhood of 0, then G, is strictly
increasing on all of [0, =). Now G;(0)=d=0, so that as a pointwise limit of strictly
increasing functions G, G, must be strictly increasing in some (right) neighborhood
of 0. To see that G, is onto [0, ==), we note that G, can (in many ways) be obtained
from a function ¢ as in Theorem 8a, and that the following argument therefore applies:
Taking @ and x, so that @(x,)>0, we have

Go(1*0) = 0(0) = 1] 740 = (& B
so that
lim Go(x) = lim Go(f*(xo)) = lim #*F(xo) = <.

X-—+oo k= —oo

Thus, as a continuous function, G, must assume all non-negative values.
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10 Theorem. Suppose q is a function which satisfies the following conditions:
(i) For some p=2, q€CP (the class of functions continuous on [0, 1] with continuous
p™ order derivative in (0, 1)): (ii) g(0)=0, q(1)=1; (iii) ¢'(1) is a positive integer
n; (iv) g(x)<x and q'(x)=0 for all x<(0, 1). Then there exists one and only one strict
t-norm T, having generator in CP?, such that T,=q. Moreover, a generator F for T is
given by

F(x) = lim q"[ a ]

k-—=ece X +Il‘"
and T itself is given by

T(x,y) = lim (g~ (x). a7*(»)),
where Q is the strict t-norm given by

2 ab
at+b—ab’

Q(a, b) =

Proor. Upon applying Lemma 10a, we see that the unique C? solution to

1
o(f(x) =, o(x)
such that ¢'(0)=d is given by
k
o(x) = d lim [%] ).
koo
That is, letting
Gy(x) = dn*hog=*oh~1(x),

the function
Go(x) = lim G(x)
k—+oo

is the unique C”? solution to

Go(f(®) =~ G, x€[0, =) and Gy(0) = d.

Now,
2 oy
Gk l(x):.hoq"ofr l[d?],
so that
=1 | S . -1 i R 1 - d“k__,,
h='(Gi ' (%)) = g*oh [dn"]_q i+l _q[x-{-dn“]’
dn*
and by Lemma 10b and Lemma 10c,
£, 1 = 1 e 1 Tl B8
S v s Rl T e W Ml Y7 W iy [x+dn* '

k—=oo

By Theorem 2a, the -norm generated by F does not depend on 4. Hence with d=1,
we obtain the desired representation for F. Recall that Fe C?, since G,, and hence
G5!, lie in CP,

3 D
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Now F(x)=h="(G~'(x)), so
' , 1
=t = G(h(x)) = 1 ; - - l].
(x) (h(x)) kLnl n [q"‘(x)
Thus T(x,y) = F(F~'(x)+F~'(y)). The desired expression for Q is now easily
obtained.

11a Definition. A function q:[0, 1] ~[0, 1] is co-convex (relative to h) if there
exists a strictly decreasing function / from (0, 1] onto [0, ==) such that the function f
given by f(x) = hog~'oh~'(x) is convex.

11b Lemma. Assume the hypothesis of Theorem 11. Then the function [ given
in Definition 11a satisfies the conditions on the function f in Theorem Se.

11c Lemma. Assume the hypothesis of Theorem 11. Let ¢ (0, =). Define
hog=*ch=1(x)

GO = Gogrori@: Kb
and
Go(x) = lim Gg(x).
koo
Then the sequence {G},—, fulfills the hypothesis of Lemma 10b.
ProoF. Letting f(x) = hogq~'oh™'(x), we have
f*(x)
G (x) =" :
) =Fe
By Lemma 11b, we can apply Theorem 8e, so that lim G,(x) exists for all x€[0, =)

k=oo
and defines there a solution ¢ =G, to the Schroder equation (p(_f(.\‘))=% o(x).

Since
g k=1,2,...,

is strictly increasing, we have for 0=x, =x,,
h='(xy) = h™'(x3)

g~ (h~ ' (xy) = ¢~ *(h ' (x2))
hog=*oh='(x,) < hoq=*oh=1(x,)

fe) )
*e) 1@’

which shows that f'is strictly increasing. The remaining assertions are proved exactly

as in Lemma 10c.

11 Theorem. Suppose q is a continuous, strictly increasing, co-convex function
on [0, 11 with q(0)=0, q(1)=1, g(x)=x for all x£(0. 1), and suppose further that

lim q'(x) is a positive integer n (since q is monotonic, it is differentiable almost
k-~1+4+
everywhere). Then there exists one and only one strict t-norm T such that q=T,.
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A generator F for T is given by

F(x) = lim g*ch~'[(hog~*ch~'(c))x],

k—+oo

where h is any function relative to which q is co-convex, and c is any fixed point from
(0, ==).

PrOOF. Just as in the cases of Lemma 9a and Lemma 10a, if G is a convex solu-
tion to the equation

G(f(x) = -};-G(.\'),

x€[0, =), obtained by Theorem 8e, then the function F given by
F(x) = h~'oG"'(x)
is the corresponding solution to our equation
q(x) = F(nF~'(x)).
In the notation of Lemma 11c, we have by Theorem 8e,

G(x) = lim Gy (x),

k—=+oo

and by Lemmas 11c¢ and 10b,
G~ '(x) = lim G ' (x).

k—+oo

Thus,
FO) = §t'e ) = 1lm k*olig (%) =

k—ea

= lim h="(hog*oh='[(hog=*ch="(c))x]) = lim g*oh='[(hog=*ch~'(c))x].
|

]

We mention here two questions for further investigation. (1) If the prescribed
function 7, is continuous and 7 is a f-norm satisfying

Fixe Xy ooy 2) = T Cx)
—_—
n places
must 7 be continuous? (2) To what extent is a r-norm 7 determined by a prescribed
function ¢ (x, y), x fixed and y variable from 0 to 1, if T(x, ») is to be equal to g(x, )

for such x and »? This second question should lead to a study of Abel’s functional
equation

e(f(») = c+o(p),
and, we suspect, to results which parallel Theorems 9, 10, and 11.

3.
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3. Inversion of t-norms

Inasmuch as the first two sections of this paper reveal one aspect of the associa-
tivity condition, namely its leading role, in conjunction with certain prescribed
conditions, in determining #-norms, this present section reveals another approach
to the meaning of the associativity condition. We define an operator 7—T* and
are primarily interested in the question, whether or not T* is associative. We con-
jecture, but have not yet proved, that, given that 7 is a t-norm, T'* is also a f-norm
only if T is one of the basic t-norms T.,.7,,, Prod, Min, or an ordinal sum formed

from these.
12a Definition. 1If SS[0, 1], we define 1—S to be the set

{1—x:xeS}.

12b Definition. Let (S, ¢) be a semigroup with S [0, 1]. The invert of (S, o)
is the set 1 — S under the binary operation ¢* given by

x+y—=14+(1—x)a(l1—y)

*y =

XG"y = max{ 0.

We remark that the invert 7* of a f-norm 7T may be conceived geometrically
as follows: (1) Imagine the graph of T drawn over the unit square; (2) Rotate the
square and graph 180° about the center point (4, 1)— a point (x, y) now bears the
value T(1—y, 1 —x), which equals 7T(1 —x, 1 —y) by the symmetry of T (3) Restore
the correct boundary values for a t-norm by adding x+y—1 to T(1—x, 1—y);
(4) At each point (x,y) where the value of x+y—1+T7T(1—x, 1—)) is negative,
replace this value by zero.

12¢ Definition. We shall write T€.# (for **of moderate growth™) if for all 0=y=
=w=1 and 0=z=x=1,

(2) Tw,x)—T(y—2z)=w—y+x—2z.

The following remarks are easily verified:
(i) If T€.#, then T is continuous.
(i) If Te.# and T5(x) exists on (0, 1), then T5(x)=2 for all x¢(0, 1), since
T,(x)—T,(y) = 2(x—y).
(iii) Inequality (2) can be written as

S-T)(w.x)=(S-T)(» 2),

i.e., the two-place function “sum minus 7 is non-decreasing in each place over the
unit square.

12 Theorem. Let T be a t-norm. Then (i) the t-norm boundary and symmetry
conditions are satisfied by T*, and (ii) if T€.# the t-norm monotonicity condition is
satisfied by T*. As a partial converse, if T(x, y) = x+y—1 for all (x, y)€I?, and if T*
satisfies the monotonicity conditions, then T€ #.
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Proor. (i) Clearly, the symmetry of T implies that of 7*. As for the boundary
conditions, 7*(0, y) is clearly 0, as is 7 (x, 0), and T*(1, y) is clearly y, and T*(x, 1)
is x.

(if) Suppose T€.# but that for some a, b, ¢, d with0=a=c=1and 0=b=d=1,
we have

T*(a, b) = T*(c, d).

Then

a+b—-14+T(1—-a,1-b)=c+d—14T(1—c,1-4d),
SO
3) P~ I~ T iy 1) = g gt b

But0=1l-c¢c=l-a=land 0=1—-d=1-b =1, so that, since Te.#,
Tl—a,1-b)-T(l-c¢,1-d)=(1—-a)—(1—c)+(1-b)—(1—d) = c—a+d—b,

contrary to (3). Therefore, if T€.#, then T~ satisfies the f-norm monotonicity
condition.

Conversely, suppose T*(a, b))=T"(c, d) for all a, b, ¢, d with 0=a=c=1 and
0=b=d=1. Then

{a+b-—l+T(l—a, 1—b)
max 0

edd=1+Pli—c, I~d)
0.

= max{

With T(x,y) = x+y—1 for all (x,y)el?, we have

Ti=g 1= wil-agki=b-1

so that

a+b—1+T(1—a,1-5b)=0.
Similarly,

c+d—1+T(l-c,1-d) = 0;
thus,

a+b—-14+T(1—a,1-b)=c+d—1+4+T(1--c¢c, 1-d),

SO
(4)

TIl—-a,1-5)-T(1—-c,1-d)=c—a+d-b=(1—-a)—(1-c)+(1-5b)—(1-4d).
Thus for any prescribed w, x, y, z with0=y=w=1 and 0=z=x=1, we may set
a=1-w, b=1-x, c=1-y, d=1-2,
and, since 0=a=c=1 and 0=b=d= 1, inequality (4) becomes
Tw,x)=T(y,2) =w=y+x-—2.

13 Theorem. Let (S, o) be a semigroup with SS[0, 1). Then the invert of the
invert of (S, o) is (S, o).



38 C. Kimberling

PROOF.
x+y—1+e6*(1—x,1—y)
¢""(x, y) = max) , =

i {!—x+l—y—l+a(.r.__1')
X+ y—1+4max —
= max 1 ' 0
[ 0
{ l—-x—y+oa(x,y)
X+y—14+max =
= max 1 g 0
0
max{(x-y) 5
= max 0 B
0
=0(x,))

14 Examples. Min* =Min, Prod*=Prod, T)=T, (hence T5=T,), and Q* (as
in Theorem 10) is not associative.
These examples are easily checked.

15 Definition. Let (S, o) be a semigroup with S€ [0, 1]. Then (S, o) is invertible
if its invert is a semigroup. Suppose ¢(+. +) is non-decreasing in each place; then
(S. @) is t-invertible if it is invertible and ¢ (-, -) is non-decreasing in each place.
Thus a -norm T is t-invertible if 77 is a f-norm (i.e., if T€.# and T is associative).

16 Theorem. Let T<.# be a t-norm which is an ordinal sum of t-invertible
semigroups (S,, T,), ac A. Then T is t-invertible, and T" is the corresponding ordinal
sum of semigroups (1—S,,T)), ac A.

RO T,x,y) if (x,y)€S8,X S, for some a<c A
T(x,y) = e , :
in {x, ¥} otherwise
x+y=14+T(1=x,1-y
T*(.\'.y):max{o ¢ }):
] {Ta(l =k l~¥) il 1=y)es. RS,
oS Al min {l —x, 1 -y} otherwise -
[0
x+y—14+T,(1—x,1=y) if (x,y)e(1-=8S)X(1-S5,)
= max{ | min {x, y} otherwise =
[0
X+y—14+T,(1—=x,1-y) .
s max 0 if (x‘ J)'E(l _Sa)X(l -S:r) e
min {x, y} otherwise

{ T3(x,y) if (x, p)e(l=S)X(1-S5,)
min {x, y} otherwise.
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