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Dual rings have been studied extensively by various authors, namely, BAER [1],
KAPLANSKY [5], and NAKAYAMA [6] etc. The introductory notions of these papers
use only the multiplicative properties of the elements of the ring. It seems therefore
natural to ask how their results can be transferred to the theory of semigroups.
This motivated SCHWARZ to introduce the notion of dual semigroups in [8].

This paper is a further study in obtaining structure theorems for dual semi-
groups satisfying maximum condition and O-simple dual semigroups. Let us define
that a semisimple-like semigroup 1s a semigroup with identity in which every right
ideal is principally generated by an idempotent. Unlike in ring theory, a semisimple-
like semigroup need not be a dual semigroup.

Throughout this paper every semigroup has 0 and contains more than one
element. If A4 is a subset of a semigroup S, then we denote A®={x¢€ §|4x=0} and
A¥={x€ S|xA=0}. A semigroup S is said to be a dual semigroup if BR-=B for
every left ideal B in S and AL®=4 for every right ideal 4 in S. One-sided and two-
sided ideals in a semigroup S are said to be proper if they are not either (0) or S.
An element x in a semigroup S is a left or a right unit according as tx=1 or xr=1
for some 7€ S. An element which is a left as well as a right unit is called a unit.

1. Semigroups with identity

In this section we shall mention the ideal structure of semigroups with identity.
We note that a semigroup S which is not right simple has a unique maximal right
ideal if S is principally generated, i.e., S = fUfS, for some f< S,

1. 1. Theorem. Let S be a semigroup with identity. Suppose S is not right simple.
Then S has a unique maximal right ideal M such that either SM=S (i.e., M is not
a left ideal) or M is a left ideal. In the latter case M is a maximal left ideal; M is a
maximal two-sided ideal and the set of non-units form an ideal.

PrOOF. If S is not right simple, § has a proper right ideal and so the set-theo-
retical union of all proper right ideals is the unique maximal right ideal M. If SM = S,
then SM is a right ideal and hence SM S M. Thus M is a left ideal. Suppose M is
not a maximal left ideal. Then there exists a proper left ideal L such that MS L.
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Now x€L, xé M = xt=1 for some 1€S. If tx#1, then téM. So xtéM since
M is a left ideal. Hence 1< M, which is a contradiction. Thus rx=1¢ L, which is
again a contradiction.

The last part follows from the observation that, if x4 M, then x is a two-
sided unit.

1.2 Corollary. If S is a right cancellative semigroup with identity, then M,
mentioned in 1. 1, is a two-sided ideal and hence satisfies the second part of the theorem.

PROOF. Let ré S and me M. If rmd¢ M, then rmS=S and so (rm)t=1. This
implies (mt)r(mt)=mt and (mt)r=1, by right cancellative condition. Hence 1M
since me M and M is a right ideal. Thus we arrive at a contradiction.

1. 3 Remark. Theorem 1. 1 is not true if we assume that S has one-sided identity.
Let S be the set of all non-zero complex numbers. Define an operation by a 0b=a b|.
(S, 0) is a semigroup. This has many maximal right ideals, in particular, S\ R and
SN(— R), where R is the set of all positive real numbers.

1.4 Remark. Even if S = fIUfS, then S is either right simple or S has a uni-
que maximal right ideal, which is the set-theoretical union of all right ideals not
containing f.

Notation. 1f a semigroup S is not right simple, then we denote by (S, M) the
semigroup with the unique maximal right ideal M.

1. 5 Definition. The Schwarz radical of a semigroup with 0, is the set-theoretic
union of all nilpotent right ideals, which coincides with the set-theoretic union of all
nilpotent left ideals or the union of all nilpotent two-sided ideals.

1.6 Proposition. If (S, M) is a semigroup with identity, then S = G M,
where G is the semigroup of right units in case S=SM, while G is the group of
units if S SM. Furthermore if S has 0 and the radical of Sis 0, then either S =G U0,
where G is the group of units or M*=0.

PROOF. The first part is an easy consequence of 1. 1. If M =0, then it can easily
be verified that every x¢€ G is a two-sided unit. If M0 and M"=0, then M*C M.
For, if xé ML and x4 M, then xr=1. Suppose 1¢ M. Then M=xtM S xM=0. If
14 M, then tm=1, which implies that xtrm=x and hence m=x. Thus tx=1c M*-
since M is a left ideal and so M =0, which is a contradiction. Now M*C M and so
we have (M*)?=0, contradicting the fact that the radical is zero.

2. Dual semigroups with identity

All examples of dual semigroups, given by SCHWARZ [8], are semigroups without
identity. An example of a dual semigroup with identity is {0, 1, a, @*=0}. Clearly
this is not a semisimple-like semigroup since the (right) ideal {0, a} is not generated
by an idempotent. In ring theory, ‘the semisimplicity’ implies for rings with min-
imum condition on right (or left) ideals the “dual’” property. However, in semi-
group theory, these two concepts are unrelated. For example, let S={0, 1, a; a*>=a}.
S is not a dual semigroup, but is a semisimple-like semigroup.
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2.1 Proposition. If M is a proper maximal right ideal in a dual semigroup
S then M0 and M* is a minimal left ideal. If M is the unique proper maximal
right ideal, then ML is the unique minimal left ideal and furthermore if SM =S,
then MR=M" and MR is the only minimal left, minimal right and minimal two-
sided ideal.

Proor. If ME=0, then M=M"R=(0)R=S, a contradiction. Let 4 be a left
ideal such that 4 S M. Since A®+0 as above and 4A®= S by a similar argument,
ASME = ARDMIR=M = AR=M = A=AR' =M%, If M is the unique proper
maximal ideal and if 4 is a minimal left ideal, then A® is a maximal right ideal
[8; lemma 1. 5] and so AR=M. Hence A=ARL=MZL If SM=S, by 1.1 M is a
two-sided ideal. Then, as before it can be proved that M*® is a minimal right ideal.
Since M is an ideal, evidently M® and M* are two-sided ideals and also minimal
ideals. Hence MR=M",

We shall now show that dual semigroups are divisible just like dual rings.

2.2 Proposition. If (S, M) is a dual semigroup with an identity, then S is
divisible, i.e., every cancellable element is an unit.

ProoF. Let x be a cancellable element. Clearly x®=0. So Sx=(Sx)Rt=(0)t=S.
Hence 1=tx for some 7€ S. This implies x=xtx and hence 1=xt by cancellative
property of x.

2. 3 Definition. A semigroup S is said to be right uniform if the intersection of
any two non-zero right ideals is non-zero.

We observe that the dual semigroups containing an identity belong to the
class of right uniform dual semigroups but dual semigroups not containing an identity
need not be right uniform. Consider the semigroup S [8: Example 5] with the multi-
plication table:

IR~ o - —

d

S is dual but S is not right uniform sincs aS(1bS = 0.

2.4 Proposition. If §is a right uniform dual semigroup, then S has only
one non-zero idempotent, which is the identity of S.

PROOF. Let e be a non-zero idempotent in S. If xceS( ek, then x=ex and
ex=0. Hence x=0. This implies e®=0 by the right uniform property of S and so
(Se)RL=(eR)L=(0)L=S. Then for every x€S, x=xe. Thus e is a right identity
of S. This implies that e is a two-sided identity by a lemma of Schwarz [8: 7. 1].

2.5 Proposition. Let S be a dual semigroup with a non-zero idempotent.
Then S is right uniform if and only if S has an identity.
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PrOOF. By virtue of 2.4 it suffices to prove that S is right uniform if S has an
identity. Let 4 and B be any two non-zero right ideals of S such that A1 B = 0.
Then A%1J B = S by Corollary 1. 3 of [8]. This implies 1€ A4 or B~ ie., A=0 or
B=0, which is a contradiction.

By noting that the regular semigroups with 0 containing more than one element,
have non-zero idempotents, we have by virtue of 2. 5,

2.6 Corollary. Let § be a regular dual semigroup containing more than one
element. If S is right uniform or equivalently S has an identity, then S is a group
with zero.

Another consequence of Proposition 2.5 is

2.7 Theorem. Let (S, M) be a dual semigroup with zero and with an identity.
Then S is a semisimple-like semigroup iff S is a group with 0.

Theorem 2. 7 can also be obtained as a consequence of the following, by noting
that a semisimple-like semigroup has zero radical.

2. 8 Theorem. (SCHWARZ [8]. Let (S, M) be a dual semigroup with 0 and with an
identity. If the radical of S is 0, then S = G'J0.

PROOF. By virtue of 1. 6, it suffices to show that M *=0. Suppose M*=0. Then
M= MLR=(0)R= S, which is a contradiction.

2.9 Remark. If we adjoin identity to a dual semigroup without identity, then
the resulting semigroup need not be a dual semigroup. Let S= {0, a, b} subject to
the conditions ab=ba=0, a* =a and b*=b. S is a dual semigroup, but $*={0, 1, a, b}
is not a dual semigroup since {0, @, b}**=(0)"=S".

3. 0-simple dual semigroups

Recently SCcHWARZ [9] has proved that O-simple dual semigroups are com-
pletely O-simple. In view of this and by a result of REegs [3; 83] and Proposition 2. 4
we have

3. 1 Theorem. Let S be a 0-simple dual semigroup. Then S is a group with zero if
either one of the conditions is satisfied:

I. S has an identity,

2. S is right uniform.

4. Right Noetherian dual semigroups

4.1 Definitions. A semigroup S is said to be right Noetherian if S satisfies
maximal condition on right ideals. A semigroup S containing 0 is right uniform if
any two non-zero right ideals have non-zero intersection.

4.2 Lemma Let S be a right Noetherian and right uniform dual semigroup. Then
for any ac S, either Sa=S or a is nilpotent.
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PrOOF. a®=0 = (Sa)®=0 since @€ Sa in dual semigroups [8; Lemma 1. 6].
Therefore Sa=(Sa)®t=(0)L=S. Let a® =0 and a be not nilpotent. Then the ascend-
ing chain of right ideals a® < (¢?)R < --- terminates by right Noetherian condition.
So there exists a positive number k such that (¢*)R=(a**")R=.... If x€(Sd*)R N d* S,
then x=d*y and a*x=0. Hence a**y=0 and so y€(a*)®=(a*)®. This implies
a@*y=0=x. Thus (S&*)®Ma* S = 0. Since S is right uniform and « is not nilpotent
by ass{t:kmption, we must have (S¢*)®=0. Hence Sa*=(Sa")*-=(0)“=S and thus
Sa=Sa*=S.

4.3 Theorem. Let S be right Noetherian and right uniform dual semigroup.
Then S has a nilpotent radical N such that S/N (Rees factor semigroup of S modulo
N) is a left O-simple and left regular semigroup.

PrOOF. Let A={ac S|a®=0}. Then A is a left ideal and is nil by 4. 2. Using
the methods as in ring theory, it can be verified easily that A is a nilpotent left ideal
and it can also be shown that the radical N of S is a nilpotent two-sided ideal. Then
it follows that A S NS A4 and thus A=N.

If x4 A, then x24 A4 by 4.2. Again applying 4. 2, we have Sx=Sx*=S. By
lemma 1. 6 of [8; 204], x€ Sx. Hence x=1x2, The rest of the proof is obvious.

4.4 Corollary. Let S be a right Noetherian and right uniform dual semi-
group with zero radical. Then S is a left O-simple and left regular semigroup.

4.5 Corollary. If a p.r.i. semigroup S (every right ideal of S is of the form
fUfs for some f€ S) is a dual semigroup, then S has a radical N such that S/N is a
left O-simple and left regular semigroup.

PROOF. Since p.r.i. condition implies right Noetherian condition, it suffices to
show that § is right uniform by virtue of 4. 3. If 4 and B are any two right ideals,
then AUB = elJeS, ec S. Hence e€ 4 or e€ B. Thus A< B or BE A, which implies
that S is right uniform.

4.6 Remark. If we just drop the right uniform condition, then 4. 3 need not
be true. Consider the example of the semigroup S cited in 2.3 S is not right uni-
form since aS15bS = 0. The radical N=0. S is not a left 0-simple semigroup and
also not a left regular semigroup.

One may naturally ask when S/N in 4.3 is a group with zero. The answer is
affirmative when S is commutative and also in the case when S contains the identity,
which is shown in 4. 7. But the general case is still an open problem.

4.7 Theorem. Let S be a right Noetherian dual semigroup containing identity.
Then S = G'JN and G\ N is empty, where G is the group of units of S and N is the
Schwarz radical of S.

PROOF. By 2. 5, S is right uniform. From 4. 3, it follows that, if 4= {a¢€ S|a® =0}
then 4=N. The proof is now completed by showing every x¢ 4 is an unit. Clearly
by 4. 2, Sx=§, i.e., there exists an element @ such that ax=1. Then xa is an idempotent
and so xa=0 or xa=1 since S has only two idempotents 0 and 1 by 2. 4. Since xa=0
implies x=xax=0, the proof is completed.
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5. Ideal lattice of a semigroup

5. 1 Definition. A non-zero right ideal in a semigroup S with 0 is said to be
not large, if there exists a non-zero right ideal B in S such that A B = 0.

5.2 Theorem. Let S be a semigroup with O and without identity. Suppose S has
more than two elements. Then the following conditions are equivalent
1) The right ideal lattice of S is a Boolean Algebra
ii) Every proper right ideal is not large
i) S is the direct union of minimal right ideals.

ProoF. By virtue of lemma 2 [2; 137] we have to show only that (ii)=(i). Assume
(i1). If A is a right ideal, then there exists a non-zero right ideal B, such that
A B, = 0. Then by Zorn’s lemma, we have A1 B = 0, where COBand A1C =0
implies C= B. The proof is completed by showing that 41 B is large, which implies
evidently that A|UB = S. Suppose AJB is not large, then (4 UB)NC = 0, for
some right ideal C. Since B C contains C properly, A (B'JC) # 0 by the maximal
property of B. Then ANNC = (ANB)U(ANC) = AN(BUC) # 0, which implies
that (4'JB)NC ## 0, which is a contradiction.

The right ideal lattice of a dual semigroup need not be a Boolean Algebra as
seen in the following example:

0abcd
000O0O0ODO O
a 000 b a
b 0O0O0ab
cl0 badece
di0 a b c d

Conversely a semigroup with complemented right ideal lattice need not be a dua
semigroup, which can be noted in the example of a semigroup S={0, a, b} where
a*=a, b*=0=ab=ba, since (0, a)*“=(0, b)-=(0, a, b)=#(0, @). We are unable to
prove that a dual semigroup with zero nilpotent radical has its right ideal lattice
complemented.

5.3 Proposition. Let S be a dual semigroup with 0 and with a complemented
right ideal lattice. If its radical N is nilpotent, then N=0.

PrROOF. Suppose N:=0. Since the right ideal lattice is complemented, by con-
dition (ii) of 5. 2, there exists a non-zero right ideal 4 such that N[ A4 = 0. Then
by lemma 1. 3 of [8; 203], NRIJ AR = S. But by lemma 5. 2 of [8; 220], every minimal
right ideal is contained in N®. This implies S=NZ® by condition (iii) of 5. 2. Hence
N=N¥x= Si=)),

5.4 Theorem. Let S be a commutative dual semigroup with 0 in which every
ideal is contained in a proper maximal ideal and the radical N is nilpotent. Assume S
has at least two distinct maximal ideals. Then the ideal lattice of S is a Boolean Algebra
if and only if the radical N of S is 0.
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PrOOF. By virtue of 5. 3 it suffices to show that if the radical is 0, then the ideal
lattice is complemented. Since N=0, M\ M* = 0 for every maximal ideal M. Also
MR 20 by dual property. Then for any arbitrary ideal A in S, there exists a non-
zero ideal B such that A4 (1B = 0, since every ideal is included in a maximal ideal.
Thus the result follows from 3. 2.

References

R. Baer, Rings with duals, Amer. J. Math. 56 (1943), 569—584.

R. L. BLAIR, Ideal lattices and the structure of rings, Trans Amer. Math. Soc., 75 (1953), 136—152.

A. H. Cuirrorp and G. B. Preston, The algebraic theory of semigroups, Vol. 1 (1961), No. 7,

Math. Surveys, Amer. Math. Soc.

[4] A. H. CLirrorDp and G. B. PresToN, The algebraic theory of semigroups, Vol. 2 (1967), No. 7,
Math. Surveys, Amer. Math. Soc.

[5] 1. KaPLANSKY, Dual rings, Ann. of Math., 49 (1948), 689—701.

[6] T. Nakayama, Algebras with anti-isomorphic left and right ideal lattices, Proc. Imp. Acad.
Tokyo 17 (1941), 53—56.

[7] M. SATYANARAYANA, Principal right ideal semigroups, J. Lond. Math. Soc. 2 (1971), 549—553.

[8] S. Scuwarz, On dual semigroups, Czechosl. Marh. Journ. 10 (1960), 201—228.

[9] S. ScHWARZ, Agy 0-simple dual semigroup is completely 0-simple, Semigroup Forum 2 (1971),
90—92.

(1]
(2]
(3]

( Received March 29, 1971.)

FL



