An exponential sum in a finite field

By A. DUANE PORTER (Laramie, Wyoming)

1. Introduction and preliminaries. Let F=GF(q) be the finite field of g=p*
elements, p odd. If « € F, we let

(1. 1) e(x) = exp2nit(a)/p; 1(%) = a+aP + - 4P,
where by its definition 7(x)€ GF(p). It follows directly from (1. 1) that
e(x+ f) = e(x)e(p), and
> q, a=0,
£ 4R = {0, =0,

where the sum is over all € Fand will be denoted by R(z). The well-known Gauss—
Sum [1, #3] and its values for F will be denoted by

(1.2)

k3 5 2 {q, =iy
where (x)=0, 1, — 1 according as x=0, x=nonzero square of F, a=nonsquare

of F, and G*(1)=y(—1)g. It is clear that y(1/x) =y (). Finally, the Cauchy—Gauss
sum [2, nl] G(«, f) the following values

q, x=f=0,
(1.4) G, p) = 3 efay + 27} = | O 2=0, 20,
e(—p32)G (), a#0.

These functions have been used in [3]. [4], [5], [7], [I1], and others, as an aid
to counting the number of solutions of various polynomial and systems of poly-
nomial equations. If A =(a;;) is an nXn matrix, a;; € F. then we let c(A) =a,,+-

- +a,, be the trace of 4. Using this definition, (1. 2) may be generalized to matriccs
[IO] as follows: Let B=(b;;), b;;€ F, be nxs, then
q- Bzos
0, B=0,
where the sum is over all s xXn matrices X =(x; ) Xy €F. Exponential sums of the

form (1. 5), and other forms, in which various specific matrices have been used in
the place of B ard X (e.c. B <"ew, symmetric, or Hermitian, and X of a fixed rank)

(1.5) S e{o(BX)) = I
X
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have been discussed by CArLITZ and HopGEs [6], [8], [9], [10]. Once again these for-
mulas have proved useful in finding the number of solutions in F of certain matric
equations, e.g. [12], [13].

In view of the generalization from (1. 2) to (1. 5), it seems natural to attempt a
generalization of (1. 3) to matrices, and so consider

(1.6) 2 e{a(CX?)},
X

where C=(c;;), ¢;; € F, is nXn and the sum is over all n>Xn matrices X=(x;;), x;; € F.
Just as the evaluation of (1. 3) is considerably more involved than that of (1. 2),
we would expect the evaluation of (1. 6) to be more difficult than that of (I.5).
However, the degree of difficulty increases very rapidly when we realize the number
of terms involved in squaring a matrix. As a result, we do not obtain an evaluation
of (1. 6) for an arbitrary nXn matrix C. We are able to evaluate (1. 6) for an arbitrary
22 matrix C, and obtain fairly complete results for n=3. For n=3 we evaluate
(1. 6) for a certain class of matrices. Even though our results are not complete, we
feel this paper is a good start toward the evaluation of (1. 6). Since the other sums
noted earlier have had much use, it is hoped that this sum will also.

2. The case n=2. We start our discussion with this case for two reasons: (1)
we are able to obtain complete results in this case, (2) it displays many of the problems
which can arise as we allow n to get larger.

Let C=(c;), ¢;;€ F, be an arbitrary, but fixed, 2X2 matrix. We now prove

Theorem 1. With C as defined above, the expression defined in (1.6) in which
the sum is taken over all 2X2 matrices X=(x;;) has the following values:

1. U-CII.:cZZ:O aﬂd

a) €;2=¢3;=0 (so C=zero), q*.
b) ¢;2 or ¢ #0, o
2. if ¢;=0, ¢;;#0 (i#j, 1=i,j=2), and
a) ¢;=c¢;=0, Y (e;)G(1),
b) ¢;;#0 (or ¢;#0) and
¢;;=0 (or ¢;;=0), qz'l/(fjj)G(])o
c;;#0 (or ¢;;#0), q* ¥ (cijcp),
3. ¢;1#0, ¢2,#0, and
a) ¢y2(ci1+¢32) = 0, with
(1) ey +¢2 =0, PV (—cyy622),
(2) ey +e22 #0, Y (—cyy1622),
b) cy2(cqy +c22) #= 0, with
(1) 4=0, PG (eyy+e32),
(2) A=0, g’y (- A),

where (a) is defined in ml, A = 2¢,,¢,,—¢2¢5y, and G(1) is defined by (1. 3).
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Proor. By matrix multiplication, we obtain

(2.1) {U(CXZ) = cll(x%l +X12X21) + C12(X2 Xy +X22X50)+

+ €21 (%11 X123 +X12X25) + €22(X21 Xy +X35).

By multiplying out the above expression, noting (1. 2) and recombining terms, we
may write (1. 6) as
Ige{ﬁ(cxz), = Y efcyy xT; +2(ci2x5 +€21X12)X11/2}
X
ve{c13 X35 +2(c12X2; + €21 X12) X22/2} e{(€11 + €22) X210 X412,

where the sum over x;; indicates a sum in which each x;;, 1=i, j=2 takes on all
values of F. We note that the constant 2 has been inserted so that (2. 2) will be
in the form of (1. 4). By summing over x,, and x,, above in accordance with (1. 4),

2.2

we obtain
2.3 l; e{c(CX?)} = 23 Glerrslerzxa +c21%12]/2)-
- +G(ez2, [c12%2 +C;1x12]/2)'e{(cll +€32) X2, X2}

The value of the right side of (2. 3) depends upon whether the entries are zero or
not zero. Hence, we must consider the various possibilities for the matrix C.

Case 1. Cy; = Cy, = 0. Then the right member of (2. 3) reduces to

2 GO, [crax2 +€21%15]/2)G(0, [cy2x5; +€21%42]/2).

%12,%21

(a) If ¢;5 = ¢35, =0 then C=zero matrix and the above sum clearly has the values g*.

(b) If ¢, 70, then the above sum is zero unless ¢,sX;5 + €3;X12 =0, 80 let Xjp= — ¢y
Xs1/Csy. Hence, x,, is arbitrary and the above sum has the value ¢° (Clearly, the
same value will be obtained in (b) if we suppose ¢, 0).

Case 2. ¢,,=0, ¢,,#0. Then the right member of (2. 3) reduces to

> G(0, [e12X2y + 21 X12)/2)e{—[c12 X2 + €21 X12]%/2% €22} G(c22) e{c22 X12 %21}
*12,%21
Once again, the only nonzero contributions to the above sum are when ¢, x,; +
+('21x12 = (],
(a) If ¢;,=c,,=0, then in view of (1.3) and (1.4), we have
G(e2)qg 2 efcaaxiaXa} = ¢*Y(c22)G(1).
X12,%21
(b) If c21¢0’ !et x12=‘_f12.‘.21/621 and Obtain
2
q*Y(c22)G(1), ¢;,=0,
G(c e{—(Cy2Cq2/Cr1) X3 ={
(zz)q'é‘ { (€22¢12/€21) 21} PY(c12€2,), €412#0.

(We again note that the same values are obtained in (b) by interchanging the cor-
responding positions of ¢, and ¢,,.)
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Case 3. ¢, #0, ¢,,=0. The same argument as advanced in Case 2 is valid
here if we simply replace ¢,, by ¢;,, and the values of the sum may be obtained in
this way.

Case 4. ¢,,#0, ¢;,#0. In this situation the right member of (2. 3) may be
written as

X12,%21

2.4) IG(CH)G(CZZ) Z e{"(cizle+021x|2)2/22('1|}'
. ce{—(ci12X21 +€21X12)%22 ez} e{(cy1 + €22) X21 X12}-

We now square the numerators in the above expressions, recombine terms, note
(1,2), and after a lengthy, but straightforward, calculation write the sum over
.\‘12, rf:] as

2,5

[ Z e[[—f’fz(cll+f-'22)/22€|1"22]x‘.2*1+2[(2f'1|f'22“‘f'125'2|)(011+f'22)/22f'11r22]‘

X12,%2

<X12%2, ) e{[— 31 (cyy +€22)/2% ¢4y €22 X7 2}

We now have a sum of the form of (1. 4) in terms of summing over x,,. Hence,
we consider the various cases necessary to evlluate it.
(a) ¢,,(c;y+c3;) = 0. In this situation the only nonzero contributions to (2. 5)
come from terms such that (2¢,,¢,; —¢;2¢3)(¢yy +C32)X,2 = 0.
(1) If ¢;;+¢,, = 0, then ¢,, and x,, may be arbitrary so that (2. 5) may be
evaluated as
2> G(0, 0)e(0 x3,) = 4>

X2

(1) If ¢y +c¢55 # 0 then ¢;,=0 and 2¢,,¢55,—¢;2¢€5; = €2,,¢55 # 0, so that
X;, must be 0 and (2. 5) equals ge(0)=gq.
(b) ¢,2(cq1+¢33) # 0. Then by noting (1. 4), and after a great deal of computation,
we write (2. 5) as

T = 3 e{A(cyy +c22)x72/c2} G(—cF2(cyy +€22)/2% ¢y €322),

X2

where 4 = 2(2¢y,¢35,—¢;2¢€31). Since ¢,,+¢,, = 0, the value of the above sums
depend upon whether or not A4 is zero. In view of (1. 3), we obtain the following:

(1) If A=0, then T =qy(ec,+ec )P (—cyyc,)G(1),
(2) If A=0, then T = qy(AW (¢, ¢22).

The theorem now follows by substituting the values obtained for (2. 5) into
(2. 4), noting that G(c,,)G(c32)=y(—c,,¢5,)q and simplifying the resulting ex-
pression.

3. The case n=3. In this situation the computations become very cumbersome
(and the results very difficult to state) when we attempt to evaluate (1. 6) for an
arbitrary matrix C. However, we can obtain an evaluation for a certain class of
33 matrices. We state these results in the following theorem.
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Theorem 2. Let C=(c;;) be a 3 X3 matrix with elements from F such that ¢;;=0,
1=j=3. Then the expression defined in (1. 6) where the sum is over all 3 X3 matrices
X=(x;), x;; € F, has the following values:

(1) ¢° . ¢;=0, all i and j,
(2) q’[l—-w’(clz)] +q°¢2(c.z). €31 #0, ¢3,#0, ¢;3=0¢3,=0,
(3) q"[]—IIIZ(A“)]-FC[‘*!&(A“)G(]), (’21¢0. (‘33#0, Cy3 Or c31¢09

where \r(2) is the Legendre function defined in w1, G(1) is given in (1.3), and A, =
=C33€12€31TC32€21Cy3-

We note that corresponding results can be obtained in (2) and (3) if we replace
¢5, and ¢, by elements of any other row (or column) of the matrix C.

PrOOF. We let C=(c;;) and X=(x;;) be 3X3 matrices with ¢;;, x;;€ F. If C=zero
matrix, then (1) follows directly by the definition of trace and an application of (1. 2).
If C#the zero matrix, we obtain

¢(CX®) =

k

I

3
2 ‘ CriXij Xk -

J

=

"
—-

We multiply out the above expression, factor out x,,, X5, X33, sum over these
variables in accordance with (1. 4), recall that ¢,=0, 1=i=3, and obtain

(3.1 21 G(0, A/2)G(0, B/2)G(0, D/2)e(E+G + H),
where G

A = ¢13X3+€13X3; +C21 X2+ €31 X135

B = ci3xy+ €21 X2+ €32 X3+ €23 X352,

D = ¢y3x3,+ €31 X3+ €3 X3+ €32 X33,

E = ¢3X33X3,+€13X32 X3,

G = €31 X 3X32+€23X3, X2,
H = ¢c3;X13X33+€33X31 X3,

and the sum over x;; indicates a summation in which each x;;, i+, varies over all
elements of F. The only nonzero contributions to the sum (3. 1) are from the terms
in which A=B=D=0. If all ¢;;=0, this condition would hold for all x;; so the
value of (3. 1) would be ¢°.

Suppose ¢,, =0, ¢,3=0. (Similar results may be obtained corresponding to

other elements being not 0.) Then setting A =B= D=0, we obtain

X2 = —(€12X2 +C13Xx3, 031 X13)/C21,s
3.2 X123 = —(€12X3; +€32X23+ C23X32)/C2y
X33 = —(€y3X3; + €31 X3+ C32X23)/C23.

By equating the two expressions for x,, above and replacing x,; by its value from
line 3 we are led to ¢;3x3,+¢;3,x,3 = 0. There are two ways in which this could
happen:
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1) ¢;3=c¢3,=0. By using this condition, substituting (3. 2) into (3. 1), noting
(1. 4), and recombining terms, we obtain

43 Pt 9{["12"31 —C31C32X3/C3] X3 e{[c32 X3 —Ca3€12X31/C21] X2y}

Xij

where the sum over x;; is over x,;, X,3, X35, X;3. If we now sum over x,; and x,,
in accordance with (1. 2), we see that the only nonzero contributions come when
C12X31—C21X32X31/€23 = 0 = Xp3X13—C23X12X31/C2y.

a) If ¢;,=0 the above sum is ¢.

b) If ¢;,=0, then we obtain x;,=c,,3;,X;3/¢;2¢,3 from both expressions in-
volving x,,. Hence, the choice of x,, is arbitrary so the above sum equals ¢°.

2) ¢,3#0. (Corresponding results will follow if ¢;; #0.) Then since ¢,;x;,+
+c3;Xx;3 = 0, we have x3;=—c3,x;3/¢;3. By substituting (3. 2) into (3. 1), the
above value for x,, into the resulting expression and after a lengthy simplifica-
tion and recombining of terms as well as summing over x,; in accordance with (1. 4),

we obtain
(13 Z G(OsAlfz)e{—All~"'21x23f5'23021}’

X21,%23

where A, = Ay x;,/¢cy,¢13— A1 X33/¢53¢;3 With A}y = €;3¢,,031+€3,¢5,¢,5. We
note that the coefficients of x,,% cancel themselves in pairs resulting in the 0 which
appears in G(0, 4,/2). It is now apparent that the only nonzero contribution to the
above sum and so also to (3. 1) in this case will come from those terms such that
A, =0. This can happen in two ways:

a) A,;=0. Then x,, and x5, are arbitrary and we obtain

¢ 2 qe{0x;x2;} = ¢°.
*21,%23
b) A,;#0. We then let x,,=c,,x,3/c,3 s0 that A=0. By substituting this
value into the inner exponential function above, and by noting (1. 3), we obtain

‘?3 qu{Anx%a/f%s} o= 1?44’(14110%3)6(1) = q*Y(4,,)G(1).

*23

Hence, the theorem is verified.

If one wishes to see why we only discussed matrices C such that ¢;=0, 1=i=3,
he may suppose this is not the case and then use (1. 4) to evaluate (3. 1). The result-
ing expression is very lengthy and difficult to handle (although it possibly could be
evaluated).

In the hypothesis of Theorem 2, we only considered matrices C such that ¢,, =0,
c,3#=0. It is of some interest and also an aid in generalization to only assume c,; =0.
We do this in the next theorem. We state only one partial result in this direction.
Results similar to all of Theorem 3 could be obtained in this situation, but we shall
not state them.

Theorem 3. Let C=(c;;) be a 3X3 matrix such that c¢,,#0, ¢, is arbitrary
and the remaining elements of C are zero. Then the sum defined by (1. 6) in which X
is a 3X3 matrix is given by q° f(c,,) where f(c,,)=q? or q according as ¢,,=0 or
cy2#0.
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PROOF. In this situation, by selecting x,, = —¢,,X,,/¢,, (which are the only non-
zero terms in (3. 2)), we write (3. 1) as

B 4 ‘?3‘3{0123‘23xsl}e{"zlxn-"sz}-

Xy
Hence, the value of x,, is fixed, but x,, may be chosen arbitrarily. If we now sum
over x;, and x5; in accordance with (1. 2), we can see that to have nonzero con-
tributions to the above sum, we must take x,;=0 (since ¢,; #0). Also, if ¢,,=0
then x,; may be chosen arbitrarily; otherwise x,; must be taken to be 0. Hence,

we obtain
qafo(f'lz)'q = q° f(cy2).
21

4. The general case. In this situation as in the case n=3, the computations
are very cumbersome if we take C to be an arbitrary matrix. However, we obtain
an evaluation of (1. 6) for a certain class of matrices. The proof of the theorem is
slightly different in the two situations of n even or n odd. We prove the case n even.
The odd case involves a different indexing procedure. We indicate a key step in the
proof and omit the remainder of the proof.

Theorem 4. Let n=3, C=(c;;) be an nXn matrix such that C=0 or c¢;, ,,_,#0,
1=1=s, s=n/2 or (n—1)/2 according as n is even or odd, and all other ¢;;=0. Then

™ . C=zero,
> e{o(CXN)} =1a™", C=0, n even,
- q3m+V4 C=<0, n odd,

where the sum over X is over all n’Xn matrices x;;, with x;; € F.

PrOOF. For C=zero the theorem follows directly from (1. 35), so we suppose
Cs#zero. We carry out the beginning multiplications for an arbitrary matrix C
so that some of the difficulties arising in the general evaluation can be seen. We
note that

"
12 CriXij Xk -

By substituting this value into (1. 6), collecting the terms of the resulting expression
in the form of (I.4), and summing over x;, |=i=n, we may write

[ 4=
o

6(CX?) =

k i

I
-
-

I

4.1 ;G{U(C'Xz)} = 2° [T G(cus AJZ)e{kZ' :Zx jZ']' ckixijxjk}e
xij r=] =] = =

where the sum over x;; is over all x;;, i##j, the prime in the sum over j indicates

that for each choice ol‘lk, i, the sum over j is over all j =k, j=i, and

n n

Ar = 2’ CriXip Zr Cir Xrk s
i=1 k=1

where the r on the summation symbols indicates that, respectively, i=r, k=r. If

we now apply part of the hypothesis of the theorem and so take ¢;=0, 1=i=n,

we see that the only nonzero contributions to (4. 1) come from terms with 4,=0,
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l1=r=n. We now take n=2s and continue the proof. Each variable of the form
X3.-1.2. appears in exactly two of the 4,, namely 4,,_, and A4,,. By setting 4,,_,=
=0=A4,,, recalling that ¢,, ,,_;#0, and solving for these variables, we obtain

n n
= (1) (2
X2t-1,2t = —[ 2 T Cp—1,iNi 211 +k2 )Ck,Zf—lxZI——IJc]/(CZI,ZI—I)!
. i=1 = ]
4.2)
n n
o 3 S (4
Xaoy, 2t = —[ 2" 'Cz:,.-xi,z:'F o4, )Ck,ZIer,k]/(CZI,ZI—l)s
i=1 k=1

where the numbers in parentheses have the following meanings: (1) 7 = 2r—1,
(2) kK = 2t—1,2t, (3) i = 2t—1,2t, (4) k+#21. By equating the above expressions
we obtain

(4.3)

n n n n
'Z;{Uczt——l‘ixi,zr—l +k2‘lt2)ck,2r—lx2:—l,k = ‘2;[3)1‘2:,:1}. 2'+n2;(4) Ck, 20 X2¢, k-
= — = =
If some of the remaining ¢;; are not 0, then in view of (4. 3), the sum in (4. 1) be-
comes very cumbersome to evaluate. However, if we apply the hypothesis of the
theorem regarding c;;, then (4. 3) is simply 0=0, so by taking x,,_, =0, 1=1=s,
we may write (4. 1) as

5 n
(4.4) q"Z"‘e{z 2“fz:,zx-|x2;-r,j-"j,zf}s
X

t=1 j=1

where the sum over Xx;; indicates a sum over all x;; except (1) x;. I=i=n and (2)
X3—1,2> 1=f=s, and the sum over j is over all j = 27—1, 2¢. It is clear that there
are exactly (n—2)s terms in the above expression.

By a careful examination of (4. 4), we can see that for n=3 and 1=1¢, i=y,
each x;; of the form x,,_, ,,. i#¢, appears in exactly two terms in the following
way: let 1=1, and i=i, be fixed. Then, for this choice of 7, we may take j=2i, and
we obtain X, _;, 2,. Also, we may take r=i, and j = 21,—1 and so obtain the
same X, 1, 2,- Lhese are the only two ways this x;; may occur. But, since, 1=1,
i=s and i#t in any one term, we have exactly s(s—1)x;; of the form x,,_; ».
But s(s—1) = s(n—2)/2 = half of the number of terms in (4. 4). Since each such
X;; appears twice, we see that one such x;; is in every term of (4. 4). By factoring
out each x,,_, ,, from the two terms in which it appears and by using the properties
of the exponential function noted in nl, we may write (4. 4) as

(4.5) fi"g:lz r]]I .I]" e{Car, 20-1X21, 20+ €20, 20=1X2i= 1, 20- 1) X201, 20}
ij =11I=

where the sum over x;; is as in (4. 4) and the product over i is such that for a fixed
choice of 7 we have i+ 1. From the representation of the subscripts on the x;; inside
the parentheses in (4. 5), it is clear that the two x;; in each factor are distinct from
each other and also from x,,_, ,;. Hence, we have 3s(n—2)/2 distinct x;; left in
the exponential functions above. Since we have already summed over  x;; in obtain-
ing (4. 1) and have fixed s=n/2 x;; in obtaining (4. 4) from (4. 1), we can see that
there are n?—(n+3s(n—2)/2+5) remaining x;; of which the expression in (4. 5) is
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independent and which are included in the sum over x;; in (4. 5). Since the func-
tions in (4. 5) are independent of these x;;, if we let each one vary over the elements
of F and also interchange the order of sums and products in (4. 5), we obtain

5 5
(4.6) g@-30=02=s T > > e{(ca, 2¢~1%21, 3¢ + €21, 20~ 1%21~1, 20-1) X21~1,20h

t=1i=1 X,

where the sum over x;, indicates a sum over each Xx,; 5, X3¢ 20~1, X2¢—1, 2i» and
the product over 7 is as in (4. 5). In view of (1. 2), we can see that the only nonzero
contributions to (4.6) come from those terms such that ¢, 51Xy 2+
+C3i,2i-1X2i-1,20=1 = 0, for all 1=r7:i=s. Since each ¢, ,_,#0, we may fix
X3i,20= —C2i,2i-1X2i-1,20-1/C21,2e-1 and the above noted expression will be 0.
Hence, x,;_; 3,-; may be chosen arbitrarily. If we now sum over x,,_; ,; in ac-
cordance with (1. 2), note (4. 1) through (4. 6), we get

s 5 !
%‘e{a(c“/z)} - qn1—5~3s(s—l}.-‘2 H H’ qz s qn2—51 = q3n314.

1=1i=1

Hence, the theorem is proven in the case # even. The theorem can be seen to be
valid for n=2 by inspection even though (4. 5) is not valid.

For n=3 and odd, if we apply the hypothesis of the theorem regarding ¢;;
immediately, then the resulting expression for (4. 2) is just x,,_, ,,=0. (If ¢;; other
than ¢,, 5, are not 0, then the statements preceding (4. 2) are not valid.) Then
the key step is noting that in the forming of (4. 5) from (4. 4), the x,,_, ,; as de-
scribed do not exhaust the terms of (4. 5) as they do in the even case. In particular,
for n odd, (4. 5) is written as

4.7) “o A tﬁl e{Car, 2t— 1 X2¢— 1,0 %n, 2¢} '{[i ef{k},

X

where k = (¢, 20~ 1X2i, 20+ Cai, 2-i1 X2i=1,20-1)X2¢~1,2i- If we now note that the
Xar—1,n Xa, 20 are all distinct, 1=r=s5, the proof proceeds along the same lines as
the case n even and we obtain

2 e{cxl} = q{3n2+1).f4_

X

We also note that although the factorization of (4. 7) is not valid for n=3, the final
formula does hold for n=3 as one can easily check by comparing with Theorem 3.
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