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Statistical inference for multidimensional
AR processes

By GYULA PAP (Debrecen) and KATALIN VARGA (Debrecen)
Abstract. It is shown that the suitably normalized maximum likelihood estima-

tor of some parameters of multidimensional autoregressive processes with coefficient
matrix of a special structure have exactly a normal distribution.

1. Introduction

Consider the 2—-dimensional real-valued stationary autoregressive pro-
cess X(t), t >0, given by the stochastic differential equation (SDE)

(0= (2 ) (Buoar) (a0,
where W (t) = (Wi (£), Wa(t)), ¢ > 0, is a standard 2 dimensional Wiener

process and A > 0, w € R are unknown parameters. This process is a
so—called 2—dimensional Ornstein—Uhlenbeck process.

Now consider the following statistics:
t
50 = [ () + X3)du,

rx(t) = /O (X (1) dXs (1) — Xo(u) X (w).

As it is known the maximum likelihood estimator (MLE) of the parameter
w is given by

oy rx(t)
0= G
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and the following holds
sx()@x(t) —w) 2N (0,1)  forall t >0,

where 2 denotes equality in distribution. This result was formulated
in ARATO, KOLGOMOROV, SINAY [2], and gives not only an asymptotic
property but an exact distribution.

We are interested in the multidimensional generalization of the above
result. Let X (t) = (X1(t),...,Xq(t))’, t > 0, prime means transposed, be
the d—dimensional process given by the stochastic differential equation

dX(t) = AX(t)dt +dW(t),  X(0) =0,

where W (t), t > 0, is a standard d-dimensional Wiener process with in-
dependent components and A is a d x d matrix. The following question
arises: what type of conditions should be assumed on the matrix A in order
that the suitably normalized MLE of its certain entries will have exactly
a normal distribution?

G. Pap and M. C. A. van ZUIJLEN [6] studied d—dimensional processes
of the special form

1) dX(t) = (—)Jd +y wicg) X(t)dt +dW(t),  X(0)=0

where I is the d X d unit matrix, A\, wy,...,w, € R are unknown pa-
rameters and C1,...,C,, are fixed d x d skew—symmetric matrices, i.e.,
Cl = —C;, i = 1,...,m. The maximum likelihood estimator of w =
(W1, ...,wm)" is given by

Ox(t) = oy (Orx(t),
where ox (t) is the m x m matrix
t
ox(t) = (/ (CiX(s),CjX(s»ds) :
0 1<i,j<m

and rx () is the m—dimensional column vector

/

= ([ t<ciX<s>,dX<s>>)

1<i<m

In [6] it is proved that

(2) o 2()(@x(t) —w) EN(0,1,),  forall t >0,
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if conditions (C1)—(C3) are satisfied, where
(Cl) Cl=—-C4i=1,...,m,
(02) (CiCj + CjCi)Ck = Ck(CiCj + CjCi), ,5,k=1,...,m,
(C3) (C;C; + C;C3)(CLCy + CCy) € L(CLCy,1 < u,v < m),
i,5,k,=1,...,m,
where £(C,C,,1 < u,v < m) denotes the linear hull of the matrices

CuCy,1 <u,v < m. The main purpose of this paper is to show that the
condition (C3) is superfluous.

Theorem. Let X(t), t > 0, be the process given by (1). Let us
suppose that the conditions (C1) and (C2) are satisfied. Then (2) holds.

In Section 2 some preparatory lemmas are given. We prove the The-
orem in Section 3. Section 4 contains some special cases. It should be
remarked that we consider only processes X(t), ¢ > 0, with initial value
X (0) = 0, but the results can be extended for processes with random ini-
tial value X (0) = £ having absolutely continuous distribution which does
not depend on the parameter w, as in [6]. This extension of the results
cover the stationary solution of the SDE (1).

2. Preliminaries

We shall make use of the following explicit formula which is a special
case of Lemma 11.6 in [4].

Lemma 1. Consider a standard d—dimensional Wiener process W (t),
t > 0. For allt > 0 let B(t) and Q(t) be d x d matrices such that Q(t) is
symmetric, positive semidefinite and

(3) Tr /0 (B(t)B'(1) + Q(1)) dt < oo.

Then
Q(t) (/Ot B(s) dW(s)) dt}

E exp {—/OT (/OtB(s) dW(s))

~ exp {% Tr /OT BB (OT(t) dt} ,

/

where I'(t), t > 0, are negative semidefinite matrices determined by the
Riccati differential equation

I(t) = 2Q(t) — D(H)B(t)B'(t)T(t),  D(T) = 0.
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Let us denote the cone of the symmetric, positive semidefinite d x d
matrices by C;. We shall also use that the distribution of a symmetric,
positive semidefinite d x d random matrix is uniquely determined by the
value of its Laplace transform on the cone Cg.

Lemma 2. If ¢ is a random matrix with ¢/ = o and ¢ > 0 then
the distribution of o is uniquely determined by the Laplace transform
¥ : Cq — (0,00) given by

d d
Y(a) :=Eexp{—Tr(a'o)} = Eexp{ — Z Zaijaij , acCq.

i=1 j=1

PROOF. First we prove that for a € C; we have Tr(a/o) > 0. It is
well known that there is a matrix 3 € C4 such that o = 3% = 3’3. The
matrix o’ is again symmetric and positive definite since

(Bof'z,z) = (o(f'z),(B'T)) >0, z € R

Hence, indeed
Tr(a'o) = Tr(8' Bo) = Tr(Baf’) > 0.

For fixed k € {1,...,d} let us consider the matrix a®¥) € C; with
entries
o) =
*J 0 else.
Then Tr ((a™) o) = opy.
For fixed k,¢ € {1,...,d}, k # £, let us consider the matrix a(*9) € C4
with entries o
(k&) { 1t 1] € {]{3,6},
o =
J 0 else.

Then Tr ((a(kﬁ))'a) = Ok + 2050 + Ops.

Using the classical result on the Laplace transform of a random vector
with nonnegative coordinates we know that the joint distribution of the
random variables

(4) {opk : 1 <k <d}U{okkp + 20k + 0w : 1 < k <l <d},
is uniquely determined by the Laplace transform

05k, 1 <k < d; spe, 1 <k << d)

d
=FEexp{ — E 8kOkk — E SkeOke ¢y Sk>Ske > 0.
k=1 1<k<t<d
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Clearly

sk, 1 <k < d; spe, 1 <k <l<d)

=Eexp{ — i sk Tr ((a(k))’a> - Z Ske Tr ((a(ke))b)
k=1

1<k<t<d
= Eexp{—Tr(a'0)} = ¢(a),

where

d
o= Z spa®) + Z spea®0 € ¢,
k=1

1<k<(<d

Consequently the joint distribution of the random variables in (4) is

uniquely determined by the Laplace transform ¢ : C; — (0,00) of the
random matrix o, hence, the joint distribution of the entries of the matrix
o is also uniquely determined by v : C4 — (0,00) since there is a one-

to-one correspondence between the entries of o and the random variables
in (4). O

3. Proof of the Theorem

The proof can be carried out as in [6]. We have to show only that for
all 7" > 0 the distribution of the symmetric, positive semidefinite random
matrix ox (T') does not depend on the parameter w = (wq,...,wy)’. Using
Lemma 2 it is sufficient to show that the Laplace transform

m T
Ur(a) =Eexp{— Y ai,j/ (CX(),CX(0)dt S, aecy,
0

ij=1
does not depend on the parameter w. Using the notation
m m
C .= Z Z Oéijcz{Cj,
i=1 j=1

we have

Ur(a) =Eexp {— /OT X'(t)CX (t) dt} .
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Next we show that C' is a symmetric, positive semidefinite matrix. We use
again that there exists a matrix 3 € C; such that o = 52 = 33, hence

aij = S¢_ BriBrj. We have

m m d d m
Cz,x) =Y O > Bribii(CiCz, ) = ZZ@WCQ: >0,
i=1 j=1k=1 k=1 |i=1
thus C' € Cg4, indeed.

Let "
A=\, + Z,_lw C

It is known that the solution X (¢), ¢t > 0, of the SDE (1) can be represented
in the form

X(t) = / t e Aqw (s).

0

Consequently,

/ " Xex di

_ /0 ' ( /0 t e_SAdW(s)) el CetA ( /0 t e_SAdW(s)) dt.

We will show that Lemma 1 can be applied with B(t) = e~ 4 and Q(t) =
!4’ CetA. Clearly the conditions (C1) and (C2) imply

B(t)B'(t) = e*M1y

/

and AC = C'A, hence
Q(t) — CetA/etA — 6_2)\tC,

and we conclude the validity of the condition (3). Applying Lemma 1 and
using the above formulae we obtain

1 T
Ur(a) = exp {5 Tr/ M (1) dt} : a € Cy,
0

where I'(¢), t > 0, is defined by
D(t) = 2e72MC — 2MT2(t),  TI(T) =0.

Consequently the Laplace transform W1 does not depend on the parameter
w and the proof is completed. O
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4. Special cases

We give some application of the Theorem.
Corollary 1. Consider the d-dimensional process X (t), t > 0, given
by
dX(t) = (—AI +y w,-C’i> X()dt +dW(t),  X(0)=0,
where
C'{:—Ci,izl,...,m,
CZ'CJ' = —CjCZ', 1<y <73 <m.

Then the maximum likelihood estimators of the parameters w1, . .., w,, are
given by
(4)
(i ry (1
o5 (t) X (t)

(W)

where

rg?(t):/ot(CiX(s),dX(s)>, (sg§>(t))2:/0t|ciX(s)\2ds,

and

o

(sg?(t) (a;%) _ m) 8T () (ag(m _ wm>> N(O, 1),

for all t > 0.

Corollary 2. Consider the d-dimensional process X (t), t > 0, given

by
dX(t) = (=M + wC)X(t) dt + dW (t), X(0) =0,
where C' = —C.
Then the maximum likelihood estimator of the parameter w is
. rx(t)
wx t) = N
=320
where
t t
()= [(CX(s)ax(o) ()= [ |oxX(s)Pds
0 0
and

sx(t) (@x(t) —w) BN(0,1),  forallt> 0.
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