An algebraic approach to distributions on an open interval
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The space 2 of complex-valued infinitely differentiable functions on the reals
having compact support is closed under convolution. If F is a distribution on the
reals then the convolution operator defined by F maps Z into the space of infinitely
differentiable functions and commutes with convolution in Z. In [7] it is shown
that every such operator is defined by some distribution. In the present article we
show that the space of distributions on any open interval (a, b) is algebraically
isomorphic to a space of operators which commute with convolution; this space is
denoted by P(a, b). We also show that the family of mappings in P(—-==, b) whose
ranges consist of functions with left-bounded support correspond to the distributions
on (—-==, b) which have left-bounded support.

Preliminary definitions

If fis any function defined on the reals we define the support of f, denoted supp f,
to be the closure of the set {¢:/(r)#0}. For any open subset © of the reals let C(Q)
be the set of all continuous complex-valued functions on Q and C=(€) be the set
of all infinitely differentiable functions on Q. For any compact subset K of Q we
denote by Z(K) the space of all ¢ in C=(£) such that supp ¢ < K. The space Z(Q)
is the union of the spaces Z(K) where K ranges over the compact subsets of Q.
The space Z((— ==, =)) will also be denoted simply by Z. The dual of Z(), that
is, the space of distributions on €, is denoted by 2°(Q). If F belongs to 2'() and
@ belongs to Z(Q) the scalar which F assigns to ¢ will be written (F(z), @(z)). If
fis a locally integrable function on Q we shall write d°f for the element of Z7(Q)
defined by

@°f(2), 0() = [ fWe@du  (all pc2(Q)).

Thus, 0°fis the regular distribution corresponding to the function /. The support of
a distribution F in 2'(€) is defined to be the complement, with respect to Q, of the
largest open set on which F vanishes.
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For any ¢ and y in Z we may define the convolution ¢*{:

e () = f(p(u)![/(r-u)du (all real 7).

Then ¢* belongs to 2 with (") =" Yy =¢" Y’ (see sections 5. 4 and 5. 5 in [9)).

We shall use the following convention: If x is any real number then x4 =
=oco4X = and x—o = —o4 X =—o; also, o—(—o) = = and g== for
all e=0.

The space P(a, b)

We assume —o=a<b=o and r = }(b—a). Thus, if a=—= or b= then
r=o=, If 0=x<r we write U, = (a+x, b—x); thus, U, is the interval (a, ). For each
@ in 2((—r, r)) there exists a smallest nonnegative number |¢| such that supp ¢ <
c[—lel, o]l

Suppose 0=c<r and let f belong to C(U,). For each ¢ in Z((—r, r)) such that
c+|@| = r the function f*¢ defined on U, , by

t+|pl

ffo) = [ fa)e@—udu

t—|p|

belongs to C= (U, |,) With (f* @)’ =f" ¢’ (see [3, Theorem 250])). Thus, if € C((a, b))
then the function f*@ € C=(U|,) forall p € 2((—r, r)); we denote by { f} the mapping
that assigns to each ¢ in Z((—r,r)) the function f*¢ in C=(U,).

We observe that if ¢ and ¥ belong to 2((—r, r)) with |(p|—§-]l1lf! < r then @*y
belongs to Z((—r, r)) with [p* | = |p|+ || (see [8], Prop. 26.7),

DEerINITION. Let P(a, b) denote the family of all the mappings 7" which assign
to each ¢ in 2((—r, r)) a function T¢ in C=(U)y)) and which satisfy the equation

T(¢™y) = (To)'y

on Uy 4y for all ¢ and ¢ in 2((—r, r)) with |p|+|y| < r.

It is a consequence of [3], Theorem 281 that {f} belongs to P(a, b) for all f
in C((a, b)). As we shall presently see, every F in Z((a, b)) defines an element F— {F}
of P(a, b).

DEFINITION. Suppose F belongs to 2’((a, b)) and ¢ belongs to Z((—r,r)). We
denote by {F}¢ the function that assigns to any ¢ in U}, the number (F(z), ¢(1—1));
consequently,

(FYo() = (F@), @(t—1)  (ll 1€T,).

Further, let {F} be the mapping ¢ - {F}¢.
Theorem 1. For each F in Z'((a, b)) the mapping {F} belongs to P(a, b).
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The theorem follows from generalizations of Theorem 5. 5-1, Theorem 5.4-3
and Corollary 5. 4-1a in [9]; the proof is omitted. It is easily seen that F— {F} is a
linear mapping (of 2'((a, b)) into P(a, b)). We shall now show that the two spaces
are, in fact, algebraically isomorphic.

For each  in 2 and any real ¢t we denote by ¥, the element of & defined by
Y1) = l,b(!'—‘r).

Lemma. For each\y € Z((a, b)) thereeixists t such that Y, Z((—r,r)) and t€U),,,.

PRrOOF. If y € Z((a, b)) there exist o and f such that supp y < [x, f]1 (a, b). If we
define 7 = (1/2)(2x+ p) then Y, €2((—r,r)) and t€U,,.

Theorem 2. The mapping F~{F} is a linear bijection of Z'((a, b)) onto P(a, b).

Proor. We show first that the mapping is “onto”. Let T€ P(a, b) be given. Let
3, (n=1,2,...) be a “d-sequence” in Z((—r,r)). Then

1) To(t) = lim To*s,(t) = lim T8: (1)

n—-ca n—-s=

for all ¢ in Z((—r,r)) and all ¢ in U},,. Define

- 2
2 £y To,(t) for a+— <t <b—-

0 otherwise.

Then £, is a locally integrable function on (a, b) since 79,¢ C(U,,,). For any ¥ in
9 ((a, b)) we may find ¢ such that y, € Z((—r, r)) and 1€ U},,,. Choosing n sufficiently
large so that

2 2
a'l'ﬁ“ <t=|p| =t+lY| < b"n

we have f, (u)=T96,(u) for t—|y,| = u = t+|{,|; therefore,

0° £, ¥ @) = [ Sl du = [ £,(u) it —u) du =

W | 1+ [l
= f Fu@ Y, (t —u) du = f 76, ()Y, (t —u) du.
t= |y =yl

We may now use (1) to conclude that Ty ,(¢)=1lim (0°f,(7), ¥ (7)) (as n—<=). Thus,
the sequence (9°f, (1), ¥ (1)) converges for all y € Z((a, b)). By [2], 315 Prop. 2 there
exists F¢ Z’((a, b)) such that F=1im 0°f,. We show that {F}=T.Forany ¢ € 2((—r, r))
and any 1€ U}, the equation

L) =To,)  (t—|o| =u=t+|o))
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holds for » sufficiently large. Therefore,

1+ gl

(Flo@) = (F@), o(t—1) = lim [ [,()e(—u)du = To(1).

™= t—lol

Consequently {F}=T. If T=0 then, by (2), each f,=0, from which it follows that
F=I1lim 0°f,=0. The mapping F- {F} is therefore one-to-one.

Characterization of distributions with left-bounded support

For the remainder of this paper we take a = — <. Accordingly, Z((—r,r))=2
and Uy, = (==, b—|¢|) for all pc2.

DEFINITION. We denote by P,(— ==, b) the subspace of all the elements 7 of
P(— <=, b) such that for each ¢ in & the function T¢ vanishes to the left of some
point (which depends on ¢).

Theorem 3. The mapping F—{F} is a linear bijection onto P.(—==,b) of the
space of distributions in 2'((— =, b)) with left-bounded support.

PROOF. As a consequence of Theorem 2 we need only show that F has left-
bounded support if and only if {F} € P, (— ==, b). Assume first that F has left-bounded
support. Then there exists a number ff<b such that F vanishes on (—==, /). Now,
for any ¢ €2 and any €U, it follows from supp ¢ <[—|¢|, @[] that

{Flo(t) = (F(),p(t—=1) =0  (all t<=f—|p)),

from which we may conclude that {F}€P, (—<=, b). Assume now that {F}¢
€P,(—=,b). For k=0,1,2, ..., we define X, to be the set of all (pE.‘Z([—-l 1])
such that {F} vanishes on the set (—eo, —k) N (—eo, b— 1). Then each X is a linear
subspace of .2([—1 1]) and

(1) %%m=gn

Equation (1) is a consequence of the assumption {F} € P, (— =, b). In addition, each
X, is closed: this follows from [2], 313, Prop. 1. The Fréchet space Z([—1, 1]) is
therefore the countable union of closed sets. By Baire’s theorem [2], 213 some X
must have a nonempty interior. But Xis a linear subspace of Z([—1, 1]) and there-
fore Z([—1,1)=X,. Thus, if f=min (—k, b—1) we have {F}o(u)= 0 for all u<p
and all g € Z([—1, 1]). In particular, if §, (n=1, 2, ...)is a ““d-sequence” in Z ([—1, 1]),
then

) (F}o,) =0  (u=<B, n=1,2,...).

Now, for any Y €2((— ==, b)) with supp i < (— ==, f) there exist numbers ¢ and d
less than f such that supp ¥ C|[c, d]. If we let t = (1/2)(c+d) then || = p—1
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and therefore, by (2), {F}J,(u)=0 for all u = t+|y,|. Thus, from (F(z),y(1))=
={F}y (1) follows
A

(F(1), ¥ (1)) = lim f {F}6,)Y,(t—u)du = 0

e = I*rl

recall that ({F}d,)"y,=({F},)*d,). Consequently, F has support bounded on the
left by B.
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