Regular congruence on a simple semigroup
with a minimal right ideal

By BRUCE W. MIELKE (Providence, R. J.)

In the first part of this paper, two characterizations of a group congruence on
a simple semigroup with a minimal right ideal are given (1. 3), (1. 9). The conditions
given in (1. 3) generalize Schwarz’s conditions for a group congruence on a completely
simple semigroup (1. 4).

In the second section, it is shown that any regular® congruence on a right simple
semigroup is characterized as the intersection of a group congruence and a band
congruence (2. 5). It is also shown that every simple semigroup with a minimal right
ideal has a minimum completely simple congruence (2. 7).

Since all regular congruences on simple semigroups with a right ideal are
completely simple congruences, it follows that the lattice of regular congruences for
such semigroups is isomorphic to the lattice of congruences on a completely simple
semigroup (2. 8). This lattice is described by KApp and SCHNEIDER [3].

The basic properties of simple semigroups with a minimal right ideal may
be found in section 8. 2 [1]. The terminology and notation will be that of CLIFFORD
and PREesTON [1].

1. Group congruences

It is clear that a right simple semigroup is simple with a minimal right ideal.
For the convenience of the reader, we will state without proofs TEISSIER’s characteriza-
tion of a group congruence [6] on such a semigroup.

Recall the following:

(1. 1) Definition. ([1], 55, Vol. I1.) A subset U of a semigroup S is said to be
left [right] unitary in S if ue U and uxc U [xuc U], for x€ 8, together imply that
x € U. A subset U which is both right and left unitary in S is said to be unitary in S.

(1. 2) Theorem. ([6]). A right simple semigroup, S, without idempotent elements
has a group congruence o if and only if S contains a subsemigroup, E, which is
unitary in S and satisfies Eae S aE for all ae ¢ SE. Moreover, E is the kernel of o and
aob for all a,be S, if and only if aE=bE.

') Let P be an abstract property of semigroups. Then a congruence o of the semigroup S
has the property P if S/¢ has this property. E. g. P con be: to be group, regular semigroup.
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One may use techniques similar to those used by Teissier to generalize (1. 2).

(1. 3) Theorem. Let S be a simple semigroup with a minimal right ideal. Then
S has a group congruence, o, if and only if S contains a unitary subsemigroup, E,
such that for all x, y€ S, xEy S ExyE. Moreover, E is the kernel of o, and (a, b)€ o
if and only if EaE=EbE.

We note here that in (1. 3), unlike (1. 2), S is not required to be idempotent
free, and that a simple semigroup with a minimal right ideal is completely simple
if and only if its contains an idempotent ([I] Theorem 8. 14). Thus as a corollary
to (1. 3), we have:

(1. 4) Corollary ([5] (4) Theorem.) Let S be a completely simple semigroup.
Then S has a group congruence if and only if S contains a simple semigroup, E,
which contains all of the idempotents of S, and for which there exists at least one
H-class, H, of S such that E( H, is a normal subgroup of H,. In this case, E is
the kernel of the congruence, and the congruence classes are of the form ExE for
x€S.

We now give another characterization of a group congruence on a simple
semigroup with a minimal righ ideal.

(1.5) Lemma. ([1] Lemma 8. 13.) Let S be a simple semigroup with a minimal
right ideal. Then S is the disjoint union of its minimal right ideals; xS is the minimal
right ideal containing x; every minimal right ideal is a right simple semigroup.

(1. 6) Definition. Let E be a subset of a semigroup 7. We say E is a right cross-
section if EMR, # 1, for all a€T. [J denoting the empty set.

(1. 7) Note. 1t is easily checked that if E is a class of a congruence g on a semi-
group T, then if x, y€ EaE for any a€T, (x,y)€o.

(1. 8) Lemma. Let ¢ be a congruence on S. Let E be a o-class which is also a
unitary subsemigroup of S and satisfies:

1) E is a right cross-section.

il) For any a€ S, there exists e E such that a=ae.

Then for any p-class, U, there exists AC S such that U = |J ExE.
xe€Ad

PrROOF. Let s€ U, then by i), E(sS # [J. By (1. 5), 5§ is the minimal right
ideal of § containing s, and hence if e€ E(sS, eS=sS. But then there exists s, € S,
such that s=es,. By ii), there exists e, € E, such that s, =s,e,. We combine these
equations to get s=es, e, € Es, E, so that every element of U is contained in a set
EXE for some x¢€ S, and there exists a subset A4 of S, such that U £ |J ExE. But

XEA
from (1. 7), it is clear that if (ExE)(\U # [ for any x€ S, then ExEC U. It now

follows that there exists a subset A of S such that U = |J ExE.
XEA
The second characterization follows:

(1.9) Theorem. Let S be a simple semigroup with a minimal right ideal. Then
if S has a group congruence, o, E, the kernel of o is a unitary subsemigroup such that:
1) E is a right cross-section.
ity For ac S, a=ae for some e ¢ E.
iii) If xEyNE # O, for x,y€S, then xEyS E.
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Conversely, if E is a unitary subsemigroup of S satisfying 1)—iii), then there exists
a group congruence, o, with E as its kernel.

PROOF. Suppose that S has a group congruence, g¢. Then by (1. 3), the kernel
of g, E, is a unitary subsemigroup of S, such that for all x, y€ S, xEy S ExyE. The
R-classes of S are of the form aS where a€ S (1. 5), so that E is a right cross-section
if for every a€ S, E(NaS # [J. But the collection of sets EaE forms a group, (1. 3)
and each element EqE has an inverse EbE which satisfies (EaE)(EbE)=EabE=E.
It is easily shown that this implies ab € E, but ab € aS, hence E is a right cross-section.
If aEbME # [, we apply (1.3) to get EabE(\E 2 aEb(E # [J. But then by
(1.7), it follows that EabE=E. Thus aEb< EabE=E. Therefore i) and iii) hold.
We now show that ii) is valid. Let a€ S. We know that a5 is the minimal right ideal
containing a (1. 5) and therefore a=as for some s€ S. By (1. 3), the p-classes of S
are of the form ExE, and we have (EaE)(EsE)=EasE=EaE. Since S/g is a group,
EsE must be the group identity, E. Thus s€ E for E is unitary, and we have ii).

Conversely, suppose that S has a unitary subsemigroup, E, satisfying i)—iii).
TEeissier ([7], 2) has shown that condition iii) is a necessary and sufficient condition
for the existence of a congruence, g, for which E is a g-class. For every p-class,
U, of S there exists a subset 4 of S, suchthat U = |J ExE, by (1. 8). Clearly E2C E,

xEA

so that E is a right identity for §/¢. To show S/¢ is a group, we need only show that
every o-class, U, has a right inverse. Let a€ S for which EaEC U. By i), EMNaS = (1,
and there is an s€ S such that as€ E. Let U’ be the p-class containing EsE, then
UU’ 2(EaE)(EsE). By ii), there exists e€ E such that a=ae. Then we have ages =
= gs€aEs (N E, and by iii), aEsS E. Thus UU’=E, and U has a right inverse. There-
fore S/¢ has a right identity and every element of S/¢ has a right inverse, hence, S/¢
is a group. ‘

The following is a simple example of a non-trivial group homomorphism on a
simple semigroup with more than one minimal right ideal and without idempotents.
For a more complex example, see [4].

(1. 10) Example. Let S = AXB the direct product of a nontrivial left zero
semigroup, A, and a Baer—Levi semigroup, B, of type (p, q) with p=qg ([1] § 8. ).
Since B is right simple idempotent free, S is simple, and A B is a minimal right
ideal for each A€ A. Clearly S has no idempotent. Define the map «: S —+ B as fol-
lows: (4, a)x=a, for all (4, a)€ S. It is easily shown that x is a homomorphism of
S onto B. One can use (1. 2) to show that there is a non-trivial homomorphism,
o, of B onto a group [4]. Clearly 20 is a non-trivial homomorphism of § onto a
group.

The following lemma is easily proven.

(1. 11) Lemma. Let S be a semigroup with subsemigroup T, and let o be a con-
gruence on S. Then o/T=(x,y):x,y€T, (x,y)€0} is a congruence on T, and if
a(o/T) is the o/T-class of ac T, then a(p/T) = T\ ag, where ag is the g-class of a.

(1. 12) Proposition. Let S be a simple semigroup with a minimal right ideal.
If 7 is a group congruence on S, then for any a€ S, aS/(z/aS) is isomorphic to S/7.

PrROOF. Let E be the kernel of 7. It is easily checked that ExE(\aS # [ for
any x€ 8, since by (1.9), E is a right cross-section. From this it follows that for

6 D
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every x€ S, there a y€asS, for which ExE=EyE. Thus if for every x€aS we define
(ExE)0 = ExE(aS, one can easily ckeck that @ is an isomorphism of S/t onto
(aS)/(t/aS).

2. The lattice of regular congruences on simple semigroups with a minimal
right ideal

We recall that in general, a semigroup need not have a minimum group con-
gruence. However, we now show that every right simple semigroup has a minimum
group congruence.

(2. 1) Proposition. Let S be a right simple semigroup, then S has a minimum
group congruence.

PROOF. One can easily show that § has a minimum cancellative congruence,
i, by ([1], Theorem 1. 7). S/u is right simple and left cancellative, hence a right
group ([1] 1. 1). Thus S/u has an idempotent, but it is also right cancellative, there-
fore S/u is a group ([1] vol. 11, 85, ex. 5). If ¢ is any group congruence, then ¢ is a
cancellative congruence, and g S . Thus g is the minimum group congruence on S.

We recall that the homorphic image of a simple semigroup with a minimal right
ideal is a simple semigroup with a minimal right ideal. Hence, if the homorphic
image of such a semigroup has an idempotent, it is a completely simple semigroup
([1] Theorem 8. 14). Thus every regular congruence on a simple semigroup with a
minimal right ideal is a completely simple congruence.

We will now find a minimum completely simple congruence.

(2. 2) Notation. Let S be a simple semigroup with a minimal right ideal.
Then for every ac S, aS is a right simple semigroup (1. 5), so that S has a mini-
mum group congruence, which we denote by y,, and a minimum band cong-
ruence, which we denote by f,.

We now quote a theorem of Howie and LALLEMENT [2] which will form the
basis for the main result.

(2. 3) Theorem. ([2] Theorem 4. 1.) Let S be a regular semigroup. If T is a group
congruence on S, and if ¢ is a band congruence on S, then S/(t (o) is a band of groups
whose idempotents form a unitary subsemigroup. Conversely, if ¢ is a congruence on
S and S|p is a band of groups whose idempotents form a unitary subsemigroup, then
0 = t()o where tis a group congruence on S and o is a band congruence on S. Moreover,
t and o are uniquely determined by .

(2.4) Lemma. Let S be a right simple semigroup. If t is a group congruence
on S, and if o is a band congruence on S, then S/(1( o) is regular.

PrOOF. If E is the kernel of 1, and x€E, then (x, x?)€t. Clearly (x, x?)¢€a,
therefore (x, x2)€1a. Thus S/(t( o) is right simple with an idempotent, hence it
is regular.

Next we generalize (2. 3) to right simple semigroups.

(2. 5) Theorem. Let S be a right simple semigroup. If t is a group congruence
on S, and if o is a band congruence on S, then S/(t (o) is regular. Moreover, if ¢ is a
regular congruence on S, then ¢ = t(\o where t is a group congruence on S and
g is a band congruence on S. In this case, t and o are uniquely determined by ¢.



Regular congruences ons simple semigroup ... 83

PROOF. t( 1o is a regular congruence by (2. 4).

Let ¢ be a regular congruence on S. Then S/p is a right group ([1] Theoiem 1. 27),
hence isomorphic to G X E where G is a group and E is a right zero semigroup ([1]
Theorem 1. 27). One easily checks that the idempotents of GXE are of the form
(e, u) where e is the identity of G and u is an arbitrary element of E. It is clear from
this that the idempotents of G X E, and hence of S/¢, form a unitary subsemigroup.
Since S/¢ is a regular semigroup, we may now apply (2. 3) to 45, the identity
relation on S/p, to get 45, = t' (10" where t’[¢”] is a group [band] congruence on
S/o. By ([1], Theorem 1. 5), there exists t[a] a group [band] congruence on S con-
taining ¢ such that t"=1/g[6"=06/¢]. Then (/¢ (c/0) = 45, and thus ¢ = (0.
is regular, therefore t” and ¢” are uniquely determined by (2.4), and hence 7 and ¢
are uniquely determined by o.

(2. 6) Lemma. Let S be a simple semigroup with a minimal right ideal, and n be

the congruence generated by the relation « = |J (7,7 f,). Then S/n is a completely
xEA
simple semigroup.

Proof. Clearly S/n is simple with a minimal right ideal. Let
njaS={(x,y):x,y€S, (x, y)€n}

fora< S. By (1. 11), n/aS is a congruence on aS, and y,( 1 f, € n/aS. Then aS/(n/aS)
is regular, since by ([1] Corollary 1. 62), it is the homomorphic image of aS/(y, f,)
which is regular (2. 3). Let e(n/aS) be an idempotent element of aS/(n/aS). then
e?ce*(n/aS)=[e(n/aS))*=e(n/aS). But we have noted in (I.11) that e(n/aS) =
= en () aS, therefore e? € en. Since e? € e? n=[en]? and = is an equivalence relation, we
have [er]>=en, so that ex is an idempotent element of S/z. Thus S/x is simple with a

minimal right ideal, and has an idempotent, therefore it is completely simple by ([1],
Theorem 8. 14).

(2. 7) Theorem. Let S be a simple semigroup with a minimal right ideal. Then
n, as in (2.6), is the minimum completely simple congruence on S.

Proor. Let ¢ be any completely simple congruence on S. For every a€ S, it
is easily shown that the collection of all g-classes of S which have non-trivial inter-
section with aS is an R-class of S/g. So there exists ecaS for which eg=(ep)?.
But then, egNaS = (eg)*MNaS and by (1. 11), we have g/aS is a regular congruence
on aS. We recall that all regular congruences on right simple semigroups can be
written as the intersection of a group ccngruence and a band congruence (2. 3).
Therefore g/aS = t( e, where 7 is a group congruence on aS and ¢ is a band con-
gruence on aS. Then ¢/aS = 1Mo =2 3, p,. Since a is arbitrary, ¢ 2 3, B, for
all @€ S. But x is the smallest congruence containing 7, f, for all a€ S, hence p 2 n.
Thus 7 is the minimum completely simple congruence on S.

(2. 8) Theorem. Let S be a simple semigroup with a minimal right ideal, and
7 be the minimum completely simple congruence on S. Then if ¢ is a regular congruence
on S, n< 0. and g/n is a congruence oin S/n. Let 0 be the map of C, the lattice of regular
congruences on S, to C’, the lattice of congruences on S/n, defined by 00=p|n. Then 0
is a lattice isomorphism of C onto C’.
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The lattice of congruences on a completely simple semigroup, hence on S/x,
is discussed in detail in [3]. Two immediate consequences of (2. 8) are:

(2.9) Corollary. The lattice of regular congruences on a simple semigroup with
a minimal right ideal is semimodular.

(2. 10) Corollary. Let S be a simple semigroup with a minimal right ideal. Then
S has a minimum group congruence.
We now generalize (2. 5).

(2. 11) Corollary. Let S be a simple semigroup with a minimal right ideal.
Then ¢ is a regular congruence on S, for which the idempotents of S/¢ form a unitary
subsemigroup of S/g if and only if ¢ = (o, where 7 is a group congruence on
S and o is a band congruence on S. Moreover, T and ¢ are uniquely determined
by o.

Proor. If ¢ is a regular congruence with the idempotents of S/p forming a
unitary subsemigroup, then 7 < p. But then there exists ¢’, a congruence on S/x,
such that ¢o’=g/n. We know that S/n is regular, and hence by (2. 3), it follows that
0" = 1" MNa’, where 1"[6] is a group [band] congruence on S/a. In fact, " and ¢’
are uniquely determined by ¢’. But then there exist congruences T and ¢ on § con-
taining = that satisfy ©"=1t/n and ¢’=o/n, by ([I] Theorem 1. 6). Clearly t[o] is a
group [band] congruence on S, and ¢ = t( 6. Moreover, since " and ¢” are uniquely
determined by ¢’, we have t and o are uniquely determined by p.

Conversely, suppose that ¢ = t( o, where t[o] is a group [band] congruence
on S. Then we have St and < g, so that by ([1] Theorem 1. 6) we have t"=1/x
[6”=a/n] is defined and is a group [band] congruence on S/x. Clearly (S/7)/(z"N¢")
is isomorphic to S/g. But S/n is regular, and applying (2. 3), we see that the idem-
potents of (S/m)/(r"MNe”) form a unitary subsemigroup. Thus the idempotents of
S/o form a unitary subsemigroup of S/¢, and we have our result.

We close by noting that since the semigroup, S, of example (1. 10) is a simple,
idempotent-free semigroup, R is a band congruence on S ([I] ex. 1, 93, Vol. II).
But S has a non-trivial group congruence, g, therefore by (2. 11), ¢\ R is a non-
trivial, completely simple congruence on S. For other examples, see [4].
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