On the additive group of a torsion-free ring of rank two

By H. FREEDMAN (London)

Throughout this note a group means an abelian group and a ring — an associa-
tive ring with an identity element. A ring is said to be torsion-free of rank two if its
additive group is itself torsion-free of rank two.

A group G is said to admit a ring if there exists a ring (with identity) whose addi-
tive group is isomorphic to G.

If G is a torsion-free group 7T(g) denotes the type') of an element g in G and
7 (G) denotes the set of all types 7 such that elements of type 7 exist in G. .7 (G)
is a partially ordered set. The type t=(k,, k,, ..., k,, ...) is said to be reduced if
k=0 or == for each i. A type " is said to be maximal if there is no 7 in .7 (G) such
that t=1". A group G is homogeneous if all its non-zero elements are of the same
type, in particular, all groups of rank one are homogeneous.

[t is well known (see [4] or [2], 270) that a group of rank one admits a ring if
and only if is type is reduced.

The main aim of this note is to prove some necessary conditions for a torsion-
free group of rank two to admit a ring.

Theorem. Let G be a torsion-free group of rank two. If G admits a ring R then
7 (G) contains at most three elements.

PROOF. Since G admits a ring there exists a bilinear mapping ¢:GXG —~ G
which can be factored through a mapping x:G®G - G, where G® G denotes the
which can be factored through a mapping 2:G® G —~ G, where G ® G denotes the ten-
sor product. It follows that Hom (G ® G, G) and therefore also Hom (G, Hom (G, G))
1s non-trivial (see [3], 256).

We identify the elements of G with those of R. If g, is the identity of R, then
for every g in G T(g) = T(ggo) = T(x(g®gp) = T(g®go) = T(gy). Also, since
G is of rank two the elements of .7 (G) satisfy the maximum condition (see [1], 109).
Indeed it follows from the argument there that in our case each chain is of length at
most two. Therefore to prove our theorem it is enough to show that there are at
most two maximal types.

Assume that g, and g, are elements in G with T(g,)=1,, T(g,)=1,. where
7, and t, are maximal and t, #1,. Let G; be a pure subgroup of G rank one contain-

’_J For the definition of types see [2], 145—147.
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ing g; (i=1, 2). (Such groups exist, see, for example, [3]. 116). Consider the follow-
ing exact sequence

0-G,~-G-G/G,;—~0
Since G, is torsion-free it follows that
0_“G| ?962_'6@62_’6/61@02"0

is also exact (see [3] p. 260).
Hence,

0-Hom(G/G,®G,. G)-Hom(G®G,, G)-Hom(G,®G,. G)

is exact (see [3], 186).
Now, Hom (G, ®G,, G) = 0 since the type of every element of G,®G, is
greater than the type of any element in G. It follows that

Hom(G/G,®G,, G) = Hom(G®R G5, G) = Hom(G,® G, G) =
= Hom(G,, Hom(G, G)).

Suppose there exists an element g, in G of maximal type such that T(g;)# 1y, 7,.
Let g; and g, be the cosets of G, in G containing g; and g, respectively. Since G,
is pure in G, G/G, is a torsion-free group of rank one and therefore homogeneous.
So T(g,)=T(g,). Also, T(g;)=T(g,). Suppose T(g;)=T(g;). Then T(g;)=
=T(g,)=T(g,) which contradicts the maximality of 7(g,). Therefore T(g;)=T(g).
By the maximality of 7(g;), Hom (G/G, ® G,, G) = 0. Similarly

Hom (G/G,®G,, G) = 0.

It follows that both Hom (G,, Hom (G, G)) and Hom (G,, Hom (G, G)) are trivial.
Hence, Hom (G® G, G) = 0, but this contradicts the assumption that G admits a
ring and completes the proof of the theorem.

Remarks. It is easy to see that

(1) R is commutative.

(i1) T(g,) is reduced, in particular if G is homogeneous then its type is reduced.

Further, if T (G) contains three elements then they are all reduced. For, if g,
and g, are elements of maximal type such that 7(g,) = 7(g,). and T(g,) not reduced,
then T(g, ®g,) > T(g,)and T(g, @g,) = T(g,). It follows thatg, - g, = g,-&, = 0.
Henceng, = ng,-go = n,g,-g,+n,g,-g, = 0 where n, n,, n, are integers and n =0,
but this is a contradiction.

In the case of torsion-free groups of rank two the existence of a homomorphism

2:G®G — G satisfying a certain condition ensures the existence of a ring structure
on G.

Lemma. Let G be a torsion-free group of rank two. Then the following condi-
tions are equivalent:

(i) G admits a ring.
(ii) There exists a homomorphism 2:G®G —~ G and an element g, in G such
that 2(g,®¢) = x(g®g,) = g for all g in G.
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Proof. It is clear that (i) implies (ii). To show that (ii) implies (i), define a-b =
= a(a®b) for all a, b in G. Clearly this defines a multiplication on G which is dis-
tributive over addition, to show that it is a ring we need only prove the associa-
tive law.

Let g, be an element of G such that g, and g, are independent. Then

mgy g, = Mogo+m g,

where m, mg, m, are integers.
Therefore

m(g,+81)"81 = MoLo*&1 + M gy1+8 = Mg "Lo+M g8 = Mg, +(g+81)

Hence,
(g1°81):8 = & -(2,-21)

It follows that (a+b)-c = a-(b-c) if each of the elements a, b and ¢ is equal either
to g, or g,. Since every g in G satisfies an equation of the form ng = nyg,+n, g,
for some integers n, ny, n;, and since the distributive law holds it follows that the
multiplication defined above is associative. This completes the proof of the lemma.
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