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§ 1. Introduction

Although the notion of permanent goes back to Cauchy ([3], 577), permanents
have never attracted as much attention as e.g. determinants. Several investigations
have dealt of late with the permanents of doubly stochastic matrices. The reason
for this is probably to be found in van der Waerden’s conjecture formulated back
in 1926 ([6]), and not yet solved. If permanents never occupied the centre of the
stage, this can be attributed mainly to the fact that hardly any applications could be
found for them.

One of the aims of the present paper is to point out applications of permanents
in probability theory.

In §3. we employ the Cauchy—Binet expansion for permanents of product
matrices in order to define discretely distributed random vector-variables generalizing
the polynomial distribution.

In §4. we obtain equalities and inequalities for permanents, starting from
probabilistic models. Among the results obtained, a new procedure for the approxi-
mative determination of the eigenvalues of positive definite or semidefinite Hermitian
matrices, based on the computation of permanents merits to be mentioned. In
this same section it is also shown that the application of the method of Graeffe—
Bernoulli for determining the greatest eigenvalue of positive semidefinite Hermite-
symmetrical matrices, and the new procedure above mentioned stem from a com-
mon root.

In § 2. we consider results needed in the sequel, in particular the Cauchy—Binet
expansion for the permanent of a product matrix, as well as some theorems con-
cerning the moments of discrete random variables.

§ 2. Preliminaries

a) Let the elements of the matrix
4= (aﬂc) (fs k=1! sevy m)

be complex numbers. By the trace of this matrix we mean the expression

m
Jm=l
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and by its permanent the expression
Per A =Za,“ ver ks (_k|....,km)EPm

where P, is the set of permutations without repetition of the elements 1, ..., m.

Let A and B be matrices of m rows and r columns. We denote by A} the matrix
with f, columns, each of them equal to the k-th column of the matrix 4. Again
(A§" ... A) denotes the matrix obtained by writing the matrices Ay'), ..., 4] con-
sccutlvcly, and having thus m rows and f, +---+f, columns. If ﬁk_O this means
that from the matrix (A4}}))... 4;”) the k-th column of the matrix A4 is missing. Let B”
denote the transpose of the matrix B.

In the sequel we shall often use the Cauchy—Binet expansion theorem for
the permanent of matrix products ([3], 579). According to this theorem

(1) Per(4B") = 3 ﬁ—,l X -Per (41 ... A{D)Per (B} ... BY),

where the summation extends to the integers satisfying the conditionsons

(2)

0=g=m  (k=1,...,1), B+ +B =m
Let

A=

A4 (0)]

0 4
where 4,, ..., 4, are complex numbers. From the identity (1) we get

..

l

"‘ﬁ. ﬁ'

b) In proving our statements formulated in § 2., we shall need the following
results:

Lemma 1. If the random variable ¢ is definied by

3) Per (4AB") = " Per (ALY .. ALD) Per (B ... BY).

PEsa) e Gl wgly P

k=1

where a, (k=1, ..., n) are complex numbers and if

) Moy (8) = é; aaf p..,

then the matrices
Moy Moy ... My,
MIO Mll b Mlv

- - .

(3) Ho(l) = M, = (v=0,1,2,...)

My ALy B

Hermite-symmetric in view of M,;=M,,, are positive semidefinite matrices.
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ProoF. For any nonnegative integer v and for arbitrary complex numbers
Xos Xy =59 Xy 1he relation

3 v oy n
2 Plxot+axy+o-tapx,t= 3 F| 3 “ﬁﬁfpk]xsfﬁ =0
k=1 2=0 =0 k=1
holds, and in view of (4) this already proves our statement.

Lemma 2. If besides the conditions of Lemma 1. one also has a, (k=1, ..., n)

real and
M, = E(& fa=0,1.2 ..}

then the Hankel-symmetrical matrices

Mo J"f] weu :W‘.

(6) "/{v('f)=‘f/\.= m{' MZ “‘M\r-l-l

: (v=0,1,2,...)
M, My, ..My,

are positive semidefinite and

(7) Det #,() =0 (v=n+1,n+2,..).

PrROOF. From the fact that (4) implies M,;=M,,, there follows the positive
semidefiniteness of .#,. Since the distribution function of the discrete random vari-
able ¢ can have at most n jumps, (7) is a consequence of a theorem due to Ham-
burger ([4], 248).

Lemma 3. If besides the conditions of Lemma 1. the numbers a, (k=1. ..., n)
satisfy also the conditions

(8) a =a,=--=a,=0, a; =0, p,=0,
then
My,
(9) Mk lal’ k L]
and

k

"I!E tals k_'m'
Proor. Condition (8) implies M, =0 (k=0, 1, ...) and so the sequence

""fk +1 -
(10) M, ek s i)
exists. Since the matrices (6) are positive semidefinite,
Det M-y le—l] =0,
M!k— 1 MZt

i.6
(1) M3 y = Myu_ My k=1,2,..).
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Let now be 5= +J¢. Since the Hankel-matrices
M, (n) (v=0,1,2,...)
formed with the help of the moments
E(mY) = M; k=0,1,2...)
are also positive semidefinite, and since

Muy=M, (=0,1,2..),

we have
My_., M, Moy M
Det a:l: 2 4k ] =Tt Mag—-1 2k ] =0,
_ My My in My My
1.C.
(12) M} =My My, .

It follows from the inequalities (11) and (12) that the sequence (10) is monotone
nondecreasing.
In view of

in the factor of @§ on the right hand side all the members containing factors 0= % =1

1
tend to zero for k —<=. The remaining positive members (by (8) there exists at least
one such member) are independent of k. This proves the validity of our statement (9).

That the sequence

k
(13) VE; (k=l723 3! "')
is also monotone nondecreasing follows from the Holder’s inequality and is a well-
k

known fact of probability theory ([1], 68, lemma 1.). On the other hand, } M, being
the geometric mean of the first & terms of the sequence (10), the sequence (13) tends
also to the limit a, .

§ 3. Definition of random-vector-variables with the help of permanents

Starting with the Cauchy—Binet identity exposed in § 2. a.), we define in this
section random vector-variables on nonnegative integers, we determine their charac-
teristic function, expectation and matrix of covariance.

a) Let the matrices with nonnegative elements

A=(ﬂﬁ), .B=(bjk) (j=l,...,m; k=l,...,r)
satisfy condition

(14) ABT = M,
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where M is the matrix having all its elements equal to 1. By the representation (1)
one has

2 5 p ﬁ,Per(A'” . A)Per (BSV ... BY) = m!.
1-

Since by assumption
Per(A}) ... 4f?) = 0, Per (BjY ... Bj?) =0,
the following definition makes sense:

Definition 1. We say that the random vector-variable " =(&,, ..., &,) has poly-
nomial distributior generated by the matrices A and B, if

(15) PEi=Bi,....=h) = Per(A“' Aj)) Per (By) ... Bj),

where the integers f,, ..., B, sartsﬁ-’ the conditions (2).

Theorem 1. If ¢(t,,....1,) denotes the characteristic function of the random
vector-variable ¢ having polynomial distribution generated by the matrices A and
B, then
eirl (0)
BT,

1
(16) (p(tl,...,r,)=mPerA

(0) » el't,.
PROOF. By definition we have
Pty ..ost) = E('8itmid)) =
1 :{t By+-+1.8,) ¢ ,
=i B gy PerR . AR)Per (B ... Bf)
and on the basis of the identity (3) this yields the expression (16).
On the basis of (16) we are able to compute without much difficulty the ex-

pectation-vector and the moments of second order of a random vector-variable.
Indeed, by (16)

G 5 bt il Y
E(ék)= — - (p(rls"'!tr) =t »-os ZPer ................ s
i |0t fe=..=t,=0 Ml j=1 P D TR 1

and so
1 m m
E(ék)=a Zajk Zbﬂr (k=l,..., r).
j=1 j=1
Again, a bit of computation will yield

E(f;;ff) = 5&:5(61;) +

2 adj Z aj1— Z ajkaﬂ] [2; bk Z: bj— .Z; bjkbji]v
j= i= i=

+
m(m_l) i=1 " j=

where J,; is the Kronecker symbol.

P
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Since ¢, + -+ +¢, = m, the matrix cov ¢ has the sum of each of its rows equal
to zero, and the distribution of ¢ is degenerate.

Corollary 1. If each element of the matrix B is equal to 1, and if the matrix A
with nonnegative elements satisfies also the conditions

Za“gi: 1 (j=l,...,m),
then

(l?) P(§1=Bla"':§r=ﬁr)= PCI'(A”) » A;:J):

1
Bil... B!

where f,, ..., B, satisfv conditions (2) and

m . 4
‘lp(tl S ey r,) = j” (a“e:l, Sy +aj,.e"r),

Moreover
E(él)= _,Q‘;ajk (k=ls---sr)
Jj=
and
E¢) (0

—ATA.

© EE)

The statements of Corollary 1. now follow from the fact that under the hypoth-
eses made (14) is automatically fulfilled and

Per (B3} ... BY)) = m!,

i.e. (17) is in fact a distribution. The remaining formulae can be found by substitut-
ing into the formulae already obtained.
From Corollary 1. we obtain the following

Corollary 2. If besides the requirements of Corollary 1. r=m, and A=S is a
doubly stochastic matrix, then

E¢) =1 (k=1,...,m), cov{ = I-S*S

(where I is the unit matrix).

In this connection it is perhaps worth while to remark that on the basis of (17)
we have for any doubly stochastic matrix S

P A ﬂ.., Per (S§) ... S = 1,

where the summation extends to the integers f,, ..., ,, satisfying (19). In this for-
mula all (Sg})... S§™) are stochastic matrices.
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Corollary 3. If besides the conditions of Corollary 1. the equalities

aﬁ,=ak (j=l, sany I k=l, ...,r)
also hold, then
m!

P(El =ﬁls secy §r=ﬁr) = Waq' e ar")

i.e. one has a polynomial distribution. Moreover
(P(r]-|---.| r’).‘:(alel'fl+...+a'el'l, m,
E(‘:k): mda, (k:]’ ___’r),

a, (0)
—ATA.

covi =m [ )
0) a

These well-known formulae are obtained from those of Corollary 1. partly by
straightforward substitution, partly with the help of the equality

Per (A§) ... AD) = m!af: ... ab-
valid by virtue of the surplus conditions.
b) Let the unitary matrix
U = (ay) (k=1 ...m) W =1
bF gliven. 4" denotes the conjugate of the transpose of the matrix %. On the basis
o
(1) :

(18) Per #* % = 24— [Per (U ... 4 = 1,

where the summation extends to the nonnegative integers satisfying
(19) O0=p=m (k=1,....,m), B+ + B, =m.
On the right hand side of (18) there are clearly m™ summands.

Definition 2. The random vector-variable (" =(&,, ..., &,,) is said to have poly-
nomial distribution generated by the unitary matrix U, if

: 1 ; .
Ply=Pys s bu=8a) = ﬁ‘lw |Per(?t‘:' %J)Pa
where the integers B, ..., B, satisfy the conditions (9)1.

Theorem 2. The characteristic function of the polynomial distribution generated
by the unitary matrix WU is equal to the permanent of the unitary matrix
ity (0)
(20) u* e U
(0) ea‘l...l

1.
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Moreover
(21) E¢)=1 k=1, ....m)
and
(22) cové = I-SS7T,
where
Bria)” e [”nm|2
A RO
|“J'lll|2 |umm|2

is a doubly stochastic matrix.

PrROOF. Let us take into account the definition of the characteristic function
d(¢,, ..., t,) of the random vector-variable ¢, as well as the manner in which its
@istribution was introduced by (18). If we still consider the representation (3), we
see that this characteristic function is in fact the permanent of the matrix (20).
The formula for the matrix (20) trivially shows that this matrix is unitary.

If we perform the multiplications in the matrix (20), we obtain

S11 S12 - Sim
q’({le vy !m) =Per|ccceccerines ’
sml smz 'smm
where
m i .
Su = 2.] A jdpjei = Sy (ly, s ty).
J=
Thus
) - Spp o Stk—1 AiiSiken - Sim
o Bl il = :'*;; GjetPerf e
4 9 Sm1 Smk—-1 amj smk+l Somm
hence by s4(0, ..., 0)=3d,, we get
, 1|0 Ll 2
E(§R)=_- _'_(P(tl')“"vfm) - Z Eagj| = 1 (k=]....,fh‘)
i |01 =, =g, =) fel
in comformity with (21).
Similarly
# 32 m m -
EGkS) = —[—"'* @ty s fm)] =0y 2 laul*+ 2 |a:k|2|aﬂt:2
o 01 1= Sty =0 a=1 3.ﬂ=ﬂl
e

and now a simple computation yields

E(&) = 1+ — Zl |au|? ).

From this we get (22) without difficulty.

If we compare our result just obtained with the results in a), Corollary 2. con-
cerning the polynomial distribution generated by doubly stochastic matrices, we
see that the expectation-vector and the covariance matrix coincide for the two
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distributions, if the generating doubly stochastic matrix is S. Nevertheless, the two
distributions fail to be identical, as is shown by the fact that their characteristic
functions are different.

Here too it is easy to verify that Det cov (=0, i.e. the polynomial distributions
generated by unitary matrices are degenerate.

§ 4. On the matrices of permanents

In this section we are going to deal with the Hankelian matrices of permanents.
The method to be followed will be to start with some probability distribution as
a model, and to apply to the moments of this distribution the lemmas formulated
in §2. b.).

a) We have the following

Theorem 3. Let A and B be matrices of m rows and r columns with nonnegative
elements and satisfving ABT™= M. Let moreover A be the diagonal matrix with real
elements Ay, ..., 2,. Then the Hankelain matrices (6) formed with the help of the
quantities

1 :
(23) M, = - Per (AA*BT) =0 1 8)05)
are positive semidefinite symmetrical matrices, and
(24) Det #,=0, v=r"+1.

PrROOF. On the basis of the probabilities (15), let the random variable ¢ be
defined by

. i 1 _ :
@) PE=ar... 4 = gy Per (A5 ... AR) Per (B ... BY),

where the integers f,, ..., B, satisfy conditions (2). Since by (25)
(Af'_ il
m!'B,!... B!
we get on the basis of (7)

EEH =3 Per(A}) ... AQ) Per (B§Y ... BY)),

E(E = nl:' Per (AA*BT) = M,

and so by virtue of Lemma 2. the Hankelian matrix (6) formed with the help of the
quantities (23) is in fact a positive semidefinite symmetrical matrix. Since, more-
over, there are not more than r™ numbars A{'... 2% parwise different and satisfying
conditions (2), again on the basis of Lemma 2. (24) also holds.

Corollary 4. If 7,, ..., 2, are real numbers and

r

a“‘. ;;:O (_)":]....1”1; k=]....,r), Zaj‘=],
k=1
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then the Hankelian matrices (6) formed with the help of the quantities
M, = ﬁ(ajliﬁ""“ +a;,A¥) kw1, 250
Jj=1

are positive semidefinite symmetrical matrices, and
Det #, = 0, v=r"+1.

Proor. If in conformity with what has been mentioned in Corollary 1. the
random variable ¢ is defined by

1
P(E=28...00) = ———Per(A§V ... AD),
(C 1 ) ﬂl!.”ﬂr! ( B B,)
where f,, ..., B, satisfy (2), then it is easy to see that
E() = M,

and so on the basis of Lemma 2. our statement does in fact hold.

Corollary 5. If A,, ..., ., are real, m is a natural number and

r

a=0 (k=1,....,.7), 2 =1,
k=1
then the Hankelian matrices (6) formed with the help of the quantities
(26) M, = (a5 + - +a, k)" (k=0,1,2,..)
are positive semidefinite symmetric matrices, and
Det #, = 0, v=r"+1.

Proo¥. Follows directly from Corollary 4.
It is perhaps worth while to note that the expressions (26) are the moments of
the random variable defined by
P o A — 2ol at,

ﬁl!“' Brl

In particular
E@) = Lg: a }-k] ’
’ m r 2m
D}¢)=|2a }f] - 2 ak’lk]
k=1 k=1
If m=1, the above distribution reduced to the discrete distribution P({=4;)=a;.
On the basis of Corollary 5. we have the following

Theorem 4. If the eigenvalues of the quadratic matrix A of order m are reaj,
then the Hankelian matrices (6) formed with the help of the quantities

My=trd* (k=0,1,2,..)
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are positive semidefinite symmetrical matrices, and
Det #, =0, v=m+1.

Theorem 5. If A is a normal matrix of order m, then the Hermitian symmetric
matrices (5) formed with the help

(27 M,; = Per (A*A*F) . 2=0,1,2...)
are positive semidefinite matrices.
PROOF. Since A4 is a normal matrix, it can be represented in the form
A=U A%, W% = I,

where A is the diagonal matrix formed from the eigenvalues 4,, ..., 4,, of the matrix
A. In view of (18), we can define the random variable ¢ by

(28) PE=2... 28 = |Per (%LV ... ¥§™)|2,

ﬁ_' . Bat
where f,, ..., B, are integers satisfying the conditions (19). Since the quantities (4)
belonging to the distribution (28) are given by

Maﬁ(f) = Z(A: Am)’(L e m)

the representation (3) implies

s BT ﬂ  [Per (%)) ... U5,

My(S) =

Thus by Lemma 1. the Hermitian symmetric matrices formed with the help of the
quantities (27) are in fact positive semidefinite matrices.

Corollary 6. If S is a doubly stochastic normal matrix of order m, then the sym-
metric matrices (5) formed with the help of the quantities

M,, = Per(S*STP) (o 5=0,1,2,..)
are positive semidefinite matrices.

PrROOF. On the basis of Theorem 5. our statement is trivial.
It is interesting in connection with this corolary, that by our hypotheses ST ST#
is a stochastic matrix, and so 0<M ;=1.

Corollary 7. If A is a Hermitian symmetric matrix, then the symmetric matrices
(6) formed with the help of the quantities

M, = Per A* (k=0,1,2,...)
are positive semidefinite matrices and
Det #, =0, v=m"+1.

ProoOF. Since by hypothesis A*=A, our statement immediately follows from
Theorem 5. and from the proof of Theorem 3.
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b) The following theorem renders possible the numerical determination of
the greatest eigenvalue of positive semidefinite Hermitian symmetric matrices.

Theorem 6. If the Hermitian symmetric positive semidefinite matrix A has its
greatest eigenvalue 2., positive, then

4
e R o
and
k‘___
(29) VPer A 1AM, koo

ProOF. The proof of the theorem follows immediately on the basis of Corollary 7.
and with the help of Lemma 3.

The statement expressed by (29) can be found also in the paper [2] (Th. 11)
under the condition that the greatest eigenvalue has multiplicity one.

As is known, by the v-th (v=1, ..., m) derivate of a matrix 4 of order m we

i m . .
understand the matrix A, of order [ ] the elements of which are the signed dete-
n

minants of o1der v which can be formed from the matrix 4, the rows and the columns
being arranged lexicographically. It is known that the eigenvalues of A, are the
combinational products without repetition of order v of the eigenvalues of A.

On the basis of Theorem 6. one has the following

Theorem 7. If the eigenvalues of the Hermitian symmetric positive definite matrix
A of order m are

(30) Ay o = fe 2,
then
(31) ;.'"Pc—k - (l:") 2
r AR VA A, ke,
Per A4 *! (3)
(32) _Pe'r'A‘;ﬂ A Y " k=, (v=1, ..., m).

ProOF. Follows immediately from Theorem 6.

Theorem 8. If A is a Hermitian symmetric positive definite matrix of order

m, then
k

_ Per A% g
33 ] _________.?. — D tA ¥ L)
(33) ,‘f,";VPerA,;'iu i
. PerA*+!PerAzk
34 3 =
(34) Ef?, Per A% Per A; &+ 1)

ProoF. Under the condition (30) the eigenvalues of 4-' are

1 1
= e 2 —— =
ol 0

Z_

= (Det A)(’: ) .
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and so by Theorem 7.

k

: = 1 )
-k af___ R
(35) YPerA,x, 1 [/'-m i\-n] . k .

k—eo,

—ik+1) o
(36) f‘;rA,,,:;_ ? [_ 1. _](v),
eraAz®.  SER IR

If we divide the sequence (31) by the sequence (35), and the sequence (32) by
(36), then passage to the limit yields — in comformity with our statement — formulas
(33) and (34).

Formulae (31) and (32) remind us of the wellknown Graeffe—Bernoulli procedure
for root-approximation. ([5], 36.)

As a matter of fact, on the basis of Theorem 4. and of Lemma 3. there holds
the Graeffe—Bernoulli theorem for the determination of the greatest eigenvalue of
matrices.

Theorem 9. If the greatest eigenvalue /., of the matrix A of order m is positive,
while the other eigenvalues are nonnegative, then

trAk+l

T e U

and
e
VtrA* ¢t 4,, k— oo,

Of course, the theorem corresponding to the Theorem 7. and 8. is also valid.

Theorem 10. If the eigenvalues of the matrix A of order m are positive and their
increasing order is given by (3), then

k
Vir A%t A, ... 4,, k-oo,

and
trAk‘i-l
Lol WSRO koo,
tr A% v

Theorem 11. If the eigenvalues of the matrix A of order m are positive num-
bers, then
k

F gk
lim V LT e

fekde TR

and
im L Aﬁ;f—-l————»"A”_'i' = Det A
pow AT A ED '

As a generalization of Theorem 6., we obtain on the basis of Theorem 3. and of
Lemma 3. the following
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Theorem 12. If, besides the conditions of Theorem 3.,

M=-=4=0, 4,>0,
then
Per(AA**! BT)

Per (AA* BT) bilsy -,

and

k
VPer (AA*BT)t A7,  k—oo.
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