On generalised Stieltjes transforms

By. J. L. ARORA (Pilani)

1. Introduction

If the integral
(1.1) o(p) = [ (x+p)~"' f(x)dx
0

exists, then @(p) is called the Stieltjes transform of f(x). @ (p) is called the imégc of
f(x) under the kernel (x+p)~1.
If the integral

oo

(1.2) o(p) = [ (x+p)*f(x)dx

0

exists, then @ (p) is called the generalised Stieltjes transform of f(x) of order 4. Gen-
eralised Stieltjes transform of f(x) of different orders are connected with each other
by fractional integration. A generalisation of the aforesaid transform is given by
VARMA [1]. ArYA [2], JosHI [3], SAKSENA [4] and others have also worked on the
generalisation given by Varma.

In the present note we take up a new generalisation of the above transform.
We give Uniqueness theorem, Inversion formula and other theorems connected with
our generalisation.

2. We consider the integral

@.1) Fp) = [ e pm) i fods,  Am=0,
0

provided of course, the integral on the right exists. Here also we call F(p) the
image of f(x) under the kernel (x™+p™)~*. The integration in (2. 1) is over the
positive real axis and we take p a positive real number. We write (2. 1) symbolically as

2.2) F(p) '—i-f(x), A,m, p=0.

(2. 1) reduces to (1. 2) if we take m=1 and to (1. 1) if we take A=m=1.
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3. We now present the Uniqueness theorem which is the direct consequence of
a lemma given by Bosk [5].

Lemma. Let G(x) be continuous in (0, X') and absolutely integrable in (0, =) and

(. 1) f (x"+p™)~*G(x)dx = 0, p,m, 4=0.
Then ;
(3.2) G(x)=0.

Using the above lemma, the proof of Uniqueness theorem stated below follows
at once.

Theorem 1. Let f(x) and g(x) be continuous and absolutely integrable in (0, -) and

(3.3) F(p) :;‘; f(x)
and also

7
(3.4) F(p) > g(x).
Then
(3.5 S(x)=g(x).

4. An Inversion Formula

TITCHMARSH [6], WIDDER [7] gave inversion formulae for (1. 1).

If

@ F(p) 1 /),
Then
(4.2) () = 5 [F(xe)— F(xe=")]

under the conditions stated therein.
Now we give an inversion formula for (2. 1).

Theorem 2. Let f(x) be bounded for x=0 and of bounded variation in the neigh-
bourhood of x, and

(4.3) F(p) & 19,
Then

1 > 1 ctioo mF(i)G(s)x‘**""‘" y
4.4 5 [/(x+0)+f(x—0)] = i f : — d, c=0,

r[f-]r[).—i
m m

where G(s) is the Mellin transform of F(x), provided that x¢=™"f(x)€L(0, =),
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x¢=1 F(x) £ L(0, =) and 0<=Re (s)<=m4. Further let f(x) be continuous in (0, =), then
(4. 4) becomes

4.5) f) = 2—'—

¢4 foo mf'(A) G(s).x"*""“ l

L rfgefes) ©

PrOOF. Let G(s) be the Mellin transform of F(x). Then

c=0.

G(s)= [ P~ F(pydp = [ p~' [ (x"+p™)~*f(x)dx dp =
0 0 0

]

= [ 100 [ p=i e b dp
0

0

The change in the order of integrati-on is justified under the conditions stated above.
Now on evaluating the p-integral, we get

ml(A)G(s)

(4. 6) - = [ X" f(x)dx.
s

On applying the Mellin’s Inversion formula, we get

ww mE(3)G(s)x~>tmit

L e

and if f(x) is continuous in (0, =) then we get (4. 5). Hence the theorem.

Cor. 2.1 If we take m=1, then (4. 5) reduces to

4.7 [f(X+0)+f(x 0] = 5

c=0,

i RGOy A
(4 8) f(X) —_ 2_J'H f Wj,js) - d.ﬁ, c=0.

This is a complex inversion formula for (1. 2).

Cor. 2.2 If we take A=m=1, then (4. 5) reduces to
f() = 5 [F(xe)— F(xe")
which is (4. 2).

5. In Laplace transform GoOLDSTEIN [8] proved the following theorem:
If

5. 1) F(p)=/(1)
(5.2) G(p)=g(t),
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then

(5.3) [Fem L = [ewrm®
0 p 0 !

provided the change in the order of integrations involved is justified. Here we have
an analogue of this theorem.

Theorem 3. Let
(5.4) W Fp) %10
(5.5) i) G(p) % - 8(x).
Then
(5.6) [ F)gydt = [ G@)f()ar,
0 0

provided the changes in the order of integrations involved are justified.

The proof of this theorem is simple. It is similar to that of Goldstein theorem.
Hence we omit the proof.

Theorem 4. Let
(5.7 (1) F(p) f(x)
(5.8) (i1) G(p) g(r)
Then
(5.9) p'- "'“fG(r)f(pt)dr fr‘ —mi (1) f(xt) dt

~ provided that the various changes in the order of integrations are justified.

PrOOF. We have
F() = [ )
Now on substituting x=ax and p=ap, we get
(5.10) a™ -1 F(ap) ’%f(ax).

Now on applying theorem 3 to (5. 8) and (5. 10), we get

al—mzf(;(r)f(ar)dr = fF(a!)g(:)d{ - fg(;)f(rn +amfm)-;‘f(x)dxd!.
0 0 0 0
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Now on substituting x=tx, replacing a by p and changing the order of integrations,
provided it is permissible, we obtain

p " [ GOf(ptydt = [ (x"+pm)=* [ £1-m* g(e)f(xt) dr dx
0 0 0

;' - =-=m
= 6[ t1=mi o (1) f(xt) dt.

Hence the theorem.

Cor. 4.1
Let
1
F(p) 7f().
Then
(5.11) f F(n)f(pt)dt 7 f SO (xr)dt.

The above corollary can be easily established by taking A=m=1 and g(z)=/(1).
6. Consider the integral equation [9]

(6.1) k(x) = [ f()f(xt)dt
0
were k(x) is a known function.
1. (6. 1) has a solution only if xk(x)=k (%] and the integral on the right exists.

2. Let k(x)€L?(0, ==) and K(s) be the Mellin transform of f(x). Then K(s) =
= K(1—s5). Further, let K(s) = H(s)H(1 —s), H(s) € L*(} —i=, } +i=). Then
h(x), the inverse Mellin transform of H(s) is a solution of (6. 1).

3. Iff (x)€ L?(0, ==)and is a solution of (6. 1), then image of /(x) under any Fourier
kernel is also a solution of (6. 1).

Now consider the integral

(6.2) I=fM(pr)M(r)dr,
where :
(6.3) pM(p)=J(1).

=fM(!)dr fe""f(y)dy =ff(y)dy fe‘*""M(r)d! =
0 0 0 0

= [ f0yay [emar [ e fxyax.
0 0 0

The change in the order of integration is justified provided M (7)€ L(0, =)
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and f(x) € L*(0, ==). Now on changing the order of # and x integrals, which is justified,
we get

I=[fdy [ x+y)"'f(px)ydx = [ f(px)dx [ (x+y)~"f(y)dy.
0 0 ] 0
The change in the order of integration is justified. Hence we get

(6.4) 1= [ f(px)F(x)dx,
0
where

F(p) 7 /(x).

Now we state a theorem which directly follows from (5. 11) and (6. 4).

Theorem 5. Letr (i) f(t) be a solution of the integral equation

(6.5) k(x) = [ faxn)f()d,
0
(6.6) (i) pM(p)=f(1).
Then
(6.7) [ M(ptyM(z)dr % k(x)
0

provided the conditions stated above are satisfied. If M(t) € L?(0, =), then M(t) can be
replaced by its image under any Fourier kernel.

Example. Let k(x) = (x+1)~"'. Then [10]
K(s)=TI(s)I(1—5), H(s)=T(s), h(x)=¢e"*
SEf()=e", M@)=(@+1)"".
Hence, from (6. 7), we get
i

|
e e g ey

which is a known result. If £.(x), f(x), and f, (x) denote the Fourier cosine, Fourier
sine and Hankel transform of f(x), respectively, then

£ = V@ W+ £, = VOm) o

T(u+1)

3
2"‘.’(“"'“"”[‘[;:4—-—]
2 2u+3 2u+5 3
fux) = - ;F,[“j,%f—;pﬂz—x’]. Re (1) = =5
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Obviously f(x), f.(x), fi(x), f,(x) are solutions of the equation (6.5). Thus
we have

1 2 7 dt 2x [ 13 dt
) 1+x ‘Eof(1+:2)(1+x2r2) _?J 1+t (A +x2t?)
3)|? u 1
[F[p+—-]] -l il H +1+—; —¢*
e 2 f (el 2 4 X
H[F+ D § at;
H 1 2 42
‘j'f‘liz; — X1 3
XzFl jl+l: df, RC(‘H)}—-E‘.

Since M (¢) can also be replaced by its any Fourier image, we have

nm logp = ¢ dt =
(6.9) - s 2! (L+0)(1 +pt)

- f [si (pt) sin (pt) + Ci (pt) cos ( pt)] [si (¢) sin (1) + Ci () cos (1)] dt =

= f[Ci (pt)sin (pt)—si(pt)cos(pt)][Ci(t)sin (z) —si(t) cos (1)] dt.

7. Now on substituting f(r)=¢"*"/2J (¢) and t"e~" in theorem 4, we get the
following two theorems:

Theorem 6. Let
O Fe) S,

(7.2) (i) H(p) be the Hankel transform of order p of t"F(t),

(7.3)  (iii) G(x) be the Hankel transform of order p of t**"~™*f(t).

Then

(7.4) PUEH(p) S X G(),

provided t" F(t) and t'*"~™*f(t) are continuous and absolutely integrable in (0, ==)
and x"G(x)=0(x*), o =>—1 for small x and x"~"*G(x)=0(x"1"9%), =0 for large x.

8 D
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Theorem 7. Let

(7.5) i) F(p) = /().

7.6 () H(p)=1"F(0),
7.7 (i) G(p)==t!*"""f(1).
Then

1.8 PTG S G,

provided H(p), G(p) exist and x"~* G(x)=0(x*),o = — 1 for small x and x"~ '~ G(x)=
=0(x"1"9%), §=0 for large x.

Now we shall give here a few examples which we believe to be new.

Examples on Theorem 6.

1. Let A=m=1,n= —,u—; and f(z) = t*J,(¢). Then [10]

W S (O
(7.9) (F(Ju+l)l G213 pz|01 L Vs _:_21,-1 B3 33 X
2)=n F[H‘F“z“] 0, 0, —p u+1;
1
Re(p) = — .

2. Let m=2, n=—u—g and f(t) = t3¢*1e~**/4, Then [10]
(7.10)

4—e 2+e—4
'_'{q‘qtj—'l')f:““—-e G33|r? | . . 2 f‘- X112 =ex
aryrfL+2-; 13—21 3%g 3=21-4p]2
il il vy = = en §

204447
X1F1[—g :+ ;ﬂ‘*‘l;_‘xz]s

—1<=Re(g) = %’ Re(4) = 0.

If o= 2).+2ﬂ-"%, then (7. 10) reduces to a known result.

de



On generalised Stieltjes transforms 115

Examples on Theorem 7.

1. Let A=m=1 and f(t) = sin(2}/2¢ ). Then[10]

(7.11)
o A - por
Vn 2*2I(2n+2) cos ("ﬂ)epp-zn—z(z y P) 1 5 [D2n+l(2 Vx)“‘Dznn (*‘21' X )] ,
n=0,
2. Let A=m=1, n=n—1 and f(t) = J,,(2Vt). Then [10]
(7.12) rwrep+) [ rm F L np
I'(n+p) '(e+1) 2°2 |1+ p;
r(d—pwrmn+p ., 1
—- e’ *M112y-n - x" Fin+p; 2u+1; —x),
F(l+2p)Vp (1/2) ,p(!’) I 1Fi(n+p; 2p )
n=0, Re(y)=>—1, Re(n+pu)=0.
From (7.10) and (7. 12), we easily get
|l+2,u 0 1 1 | l—2,u‘ p?
(7.13)  GE3|p*|2 7 = ﬁ'rlf‘zﬂ]zf‘z e
0, —p 14u;
Va 22T (1=24) 2
S L R
3. Let z=1, m=2, n=—1/2 and f(t) = tJ,(1/2)J_.(¢/2). Then [10]
1 1/p 9, :l).’_%’% 1
019 o) 2ext|r| 5 Y | 3 #PE P ),

4$ 43.“__4_’_;“_':4_
y=V1+x% |Re(u)|<1.

4. Let i=1, m=2, n=—1/2 and f(t) = t[J,(¢t/2)]>. Then [10]

l.’; 2u— 1

sy =1 =
nr[2p+l] e 1 1

|
3 x[Pz4.('T+x?)],
2
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5. Let A=1, m=2, n=1 and f(t) = {[J,(t/2)]*. Then [10]

1 1
& D ol u+l14+—; —x2
(7.16) L(P—+ ])_22"3_ l G%:g Pz‘ : -12‘ X*r+LF, g s
Varfu+> ‘L Ll 2u+ 1
Re (p) = — 1.

In the end, I wish to express my sincere thanks to Dr. S. C. MITRA for his keen
interest in the preperation of this paper.
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