An integrability theorem for power series

By Miss PRABHA JAIN Aligarh)

1. Heywood [2] proved the following result:

Theorem A. Suppose that $F(x) = \sum_{0}^{\infty} c_n x^n$ for $0 \le x < 1$, $\gamma < 1$ and that there is a positive number ε such that $c_n > \frac{-K}{n^{\gamma+\varepsilon}}$, for all sufficiently large values of n. (K some positive constant.) Then $(1-x)^{-\gamma} F(x) \in L(0,1)$ iff $\sum n^{\gamma-1} |c_n|$ converges.

The object of this present note is to obtain a generalization of Theorem A. 2. We prove the following result:

Theorem. Let

$$F(x) = \sum_{n=0}^{\infty} c_n x^n, \qquad 0 \le x < 1 \text{ and } \gamma < 1.$$

Suppose that there is a positive number ε such that

(2.1)
$$c_n > \frac{-K}{n^{(\gamma/p)+(1-1/p)+\varepsilon}} \qquad (0$$

for all sufficiently large values of n. Then $(1-x)^{-\gamma}(F(x))^p \in L(0, 1)$ iff

$$\sum n^{\gamma-2} \left(\sum_{k=1}^n |c_k| \right)^p$$

converges.

It may be remarked that if we put p=1 in our theorem, we get Theorem A.

3. We require the following lemmas.

Lemma 1. [5, p. 58]. If b is a constant, then

$$\frac{\Gamma(x)}{\Gamma(x+b)} \sim x^{-b}$$
, as $x \to \infty$.

130 P. Jain

Lemma 2. [3]. Let

$$F(x) = \sum_{n=0}^{\infty} c_n x^n, \quad c_n \ge 0, \ 0 \le x < 1, \qquad s_n = \sum_{k=1}^{n} c_k,$$

and $\gamma < 1$. Then, for 0 ,

$$\Big(\int\limits_{0}^{1} (1-x)^{-\gamma} \big(F(x)\big)^{p} \, dx\Big)^{1/p} < \infty \quad \text{iff} \quad \left(\sum\limits_{1}^{\infty} n^{\gamma-2} \, s_{n}^{p}\right)^{1/p} < \infty.$$

Lemma 3. [1, p. 255]. If c > 1,

$$s_n = \sum_{k=1}^n a_k, \qquad a_k \ge 0,$$

then $\sum n^{-c} s_n^p \leq K \sum n^{-c} (na_n)^p \ (p \geq 1)$.

Lemma 4. [4, p. 83]. If c > 1, $0 , <math>a_n \ge 0$ and $\{n^{-j}a_n\}$ is monotonic decreasing for some j > 0, then

$$\sum n^{-c} \left(\sum_{1}^{n} a_{k} \right)^{p} \leq K \sum n^{-c} (na_{n})^{p}.$$

4. PROOF OF THE THEOREM. We may suppose without loss that $\frac{\gamma}{p} - \frac{1}{p} + \varepsilon$ is not an integer. This will ensure the existence of the following gamma function at all relevant points. Let

$$G(x) \equiv 2K\Gamma\left(\frac{1-\gamma}{p} - \varepsilon\right)(1-x)^{(\gamma-1)/p+\varepsilon} = \sum_{n=0}^{\infty} a_n x^n, \quad \text{for} \quad 0 \le x < 1.$$

Then, since

$$(1-x)^{(\gamma-1)/p+\varepsilon} = \sum_{0}^{\infty} \frac{\Gamma\left(n + \frac{1-\gamma}{p} - \varepsilon\right)}{\Gamma(n+1)\Gamma\left(\frac{1-\gamma}{p} - \varepsilon\right)} x^{n},$$

we have

(4.1)
$$a_n = 2K \frac{\Gamma\left(n + \frac{1 - \gamma}{p} - \varepsilon\right)}{\Gamma(n+1)} \sim \frac{2K}{n^{(\gamma-1)/p+1+\varepsilon}}, \quad \text{as} \quad n \to \infty,$$

by Lemma 1. It follows from (2.1) that $c_n + a_n$ is positive for all sufficiently large values of n. Since

$$F(x) + G(x) = \sum_{n=0}^{\infty} (c_n + a_n) x^n$$

for $0 \le x < 1$. Lemma 2 now shows that $(1-x)^{-\gamma} (F(x) + G(x))^p \in L(0, 1)$ iff

$$\sum n^{\gamma-2} \left(\sum_{k=1}^{n} (a_k + c_k) \right)^p$$

converges.

But $(1-x)^{-\gamma}G^p(x)$ is a multiple of $(1-x)^{\varepsilon_p-1}$ and is therefore integrable L in (0, 1). Moreover (4. 1) shows that $\sum n^{\gamma-2} \left(\sum_{1}^{n} a_k\right)^p$ is convergent by Lemmas 3 and 4. Therefore it follows that $(1-x)^{-\gamma}(F(x))^p \in L(0, 1)$ iff

$$\sum n^{\gamma-2} \left(\sum_{1}^{n} |c_k| \right)^p < \infty$$

Thus the theorem is proved.

I wish to express my gratitude to Dr. S. M. MAZHAR, for his valuable guidance.

References

[1] G. H. HARDY, J. E. LITTLEWOOD, and G. PÓLYA, Inequalities Cambridge, 1964.

[2] P. HEYWOOD, Integrability theorems for power series and Laplace transforms, J. London Math. Soc., 32 (1957), 22—27.

Soc., 32 (1957), 22—27.
[3] R. S. KHAN, On power series with positive coefficients, Acta. Sci. Math. 30 (1969), 255—257.

[4] A. A. Konyuskhov, Best approximation by trigonometric polynomials and Fourier coefficients. Math. Sbornik 44 (86) (1958), 53—84.

[5] E. C. TITCHMARSH, The theory of functions, Oxford, 1939.

(Received July 1, 1972.)