A basis theorem for the semiring part of a Boolean algebra

By E. J. BRACKIN and P. J. ALLEN (Florence, Ala.)

In this paper a study of a class of semirings associated with a Boolean algebra will be given. For such semirings an analog of the following classical theorem of Hilbert will be developed:

Hilbert Basis Theorem: If R is a ring with identity satisfying the ascending chain condition on ideals, then R[x], the ring of polynomials in a transcendental element over R, also satisfies the ascending chain condition on ideals.

Throughout this paper, the binary operations of a Boolean algebra will be denoted by + and \cdot in place of the more common \cup and \cap . Also apostrophe 'will be used to denote the unary operation.

Definition 1: Let $(R, +, \cdot, ')$ be a Boolean algebra. Then $(R, +, \cdot)$ is a commutative semiring with zero and identity. Such a semiring will be called a *B*-semiring.

The following theorem is a well known result in the theory of Boolean algebras although it has been slightly rephrased to fit the development presented here.

Theorem 2. Let $(R, +, \cdot)$ be a B-semiring. Define the binary operation " \oplus " on R by $x \oplus y = xy' + x'y$. Then, $R^* = (R, \oplus, \cdot)$ is a ring, and I is an ideal in the B-semiring R if and only if I is an ideal in the ring R^* .

Corollary 3: Let $(R, +, \cdot)$ be a B-semiring. Then R satisfies the ascending chain condition on ideals if and only if R^* satisfies the ascending chain condition on ideals.

Let R[x] be the semiring of polynomials in a transcendental element x over the B-semiring $(R, +, \cdot)$. By inserting sufficient zero's, it is clear that all polynomials in R[x] may be assumed to have the same number of terms. The unary operation on R may now be used to define an analog of subtraction on R[x].

Definition 4: Suppose $f(x) = \sum a_i x^i$, $g(x) = \sum b_i x^i$ are in R[x]. Define the binary operation "—" on R[x] by $f(x) - g(x) = \sum a_i b_i' x^i$.

Those ideals that are closed under — will be the principal objects of study in this paper.

Definition 5: An ideal I of R[x] is complemented if f(x), $g(x) \in I$ imply $f(x) - g(x) \in I$.

Example 6: If R is any B-semiring, let I be the set of all polynomials in R[x] having constant term equal zero. Then I is a complemented ideal.

Example 7: If I is an ideal in R, then $I[x] = \{f(x) \in R[x] | \text{ the coefficients of } f(x) \text{ are in } I\}$ is a complemented ideal.

It will be shown that Example 6 is a special case of a more general situation. A construction process will be presented by which complemented ideals may be constructed in R[x] for any B-semiring R.

Lemma 8. If f(x), $g(x) \in R[x]$ and $c \in R$, then $f(x) - g(x) \cdot cx^n = f(x)cx^n - g(x)cx^n$ for every positive integer n.

PROOF. Suppose $f(x) = \sum a_i x^i$, $g(x) = \sum b_i x^i$.

Then

$$f(x) - g(x) \cdot cx^n = \sum a_i b_i' x^i \cdot cx^n = \sum ca_i b_i' x^{n+i}$$

and

$$f(x)cn^{n} - g(x)cx^{n} = \sum ca_{i}x^{n+i} - \sum cb_{i}x^{n+i} = \sum ca_{i}(cb_{i})'x^{n+i} =$$

$$= \sum ca_{i}(c'+b'_{i})x^{n+i} = \sum ca_{i}b'_{i}x^{n+i}.$$

Therefore, $f(x) - g(x) \cdot cx^n = f(x)cx^n - g(x)cx^n$ completing the proof.

Theorem 9. The ideal I generated by cx^n is a complemented ideal of R[x] for every c in R and positive integer n.

PROOF. Suppose $f(x)cx^n$, $g(x)cx^n \in I$. Then $f(x)cx^n - g(x)cx^n = f(x) - g(x) \cdot cx^n \in I$ completing the proof.

Definition 10: An ideal I in a semiring R will be called a k-ideal if the following condition is satisfied: If $a \in I$, $b \in R$ and $a+b \in I$, then $b \in I$.

Lemma 11. If f(x), $g(x) \in R[x]$, then f(x) - g(x) + f(x) = f(x).

PROOF. Suppose $f(x) = \sum a_i x^i$ and $g(x) = \sum b_i x^i$.

Then

$$f(x) - g(x) + f(x) = \sum a_i b_i' x^i + \sum a_i x^i = \sum (a_i b_i' + a_i) x^i =$$

= $\sum a_i (b_i' + 1) x^i = \sum a_i x^i = f(x).$

Theorem 12. Every k-ideal in R[x] is a complemented ideal.

PROOF: Let I be a k-ideal in R[x] and $f(x), g(x) \in I$. Then f(x) - g(x) + f(x) = f(x) by Lemma 11. Since I is a k-ideal and f(x) is in I, f(x) - g(x) is in I. The following lemma is the critical step in our development of the basis theorem.

Lemma 13. If $I \subset R[x]$, define $I^* \subset R^*[x]$ by

$$I^* = \{ f^*(x) = a_n x^n \oplus \dots \oplus a_0 = \sum \oplus a_i x^i | f(x) = a_n x^n + \dots + a_0 = \sum + a_i x^i \in I \}.$$

Then (1) I^* is an ideal in $R^*[x]$ if and only if I is a completed ideal in R[x].

- (2) $I_1 \subset I_2$ implies $I_1^* \subset I_2^*$.
- (3) $I_1^* = I_2^*$ implies $I_1 = I_2$.

PROOF: Implications (2) and (3) are obvious. Suppose I is a complemented ideal in R[x]. Let $f^*(x) = \sum \bigoplus a_i x^i$, $g^*(x) = \sum \bigoplus b_i x^i \in I^*$. Then $f(x) = \sum + a_i x^i$, $g(x) = \sum + b_i x^i \in I$. Then I is a complemented ideal implies

$$f(x) - g(x) + g(x) - f(x) = \sum +a_i b_i' x^i + \sum +b_i a_i' x^i = \sum +(a_i b_i' + b_i a_i') x^i \in I.$$

Therefore

$$f^*(x) \oplus g^*(x) = \sum \oplus (a_i \oplus b_i) x^i = \sum \oplus (a_i b_i' + b_i a_i') x^i \in I^*$$

and I^* is closed

under addition. Since $f^*(x) \oplus f^*(x) = \sum \oplus (a_i \oplus a_i) x^i = 0$ for every $f(x) \in I^*$, (I^*, \oplus) is a group.

Suppose $h^*(x) = \sum \oplus c_j x^j \in R^*[x]$. Then $f(x) \in I$ and $c_j x^j \in R[x]$ for every j, imply $c_j x^j \cdot f(x) = \sum + c_j a_i x^{j+i} \in I$. Hence $c_j x^j \cdot f^*(x) = \sum \oplus c_j a_i x^{j+i} \in I$. Finally, $h^*(x) \cdot f^*(x) = \sum c_j x^j \cdot f^*(x) \in I^*$ and I^* is an ideal in $R^*[x]$.

The proof that I^* is an ideal in $R^*[x]$ implies I is a complemented ideal in R[x] is similar and will be omitted. (This implication is not necessary for the basis theorem).

Theorem 14. If R is a B-semiring satisfying the ascending chain condition on ideals, then R[x] satisfies the ascending chain condition on complemented ideals.

PROOF: Suppose $I_1 \subset I_2 \subset \cdots$ is an ascending chain of ideals in R[x]. By Lemma 13, $I_1^* \subset I_2^* \subset \cdots$ is an ascending chain of ideals in $R^*[x]$. By Corollary 3, R^* satisfies the ascending chain condition on ideals so by Hilbert's classical result $R^*[x]$ satisfies the ascending chain condition of ideals. Hence there exists a positive integer N such that $I_n^* = I_N^*$ for every $n \ge N$. Therefore, by Lemma 13 $I_n = I_N$ for $n \ge N$ and thus R[x] satisfies the ascending chain condition on complemented ideals.

In view of theorem 12, the following corollary is immediate.

Corollary 15: If R is a B-semiring satisfying the ascending condition on idelas, then R[x] satisfies the ascending chain condition on k-ideals.

(Reccived Mach. 2, 1972.)