Abelian groups in which every neat subgroup is a direct summand

By RONALD C. LINTON (Nashville, Ten.)*)

1. Introduction

When investigating the structure of a given abelian group G it is often of value to know how certain subgroups sit in G. For example, Kertész [4] has shown that every subgroup of G is a direct summand if and only if every element in G has square-free order. Fuchs, Kertész and Szele [3] have shown that

Theorem A. An abelian group G has the property that all its pure subgroups are direct summands if and only if it has one of the following forms:

(1). G is a torsion group, each p-primary component of which is the direct sum

of a bounded and a divisible group.

(2). G = D + E where D is divisible and E is the direct sum of a finite number of mutually isomorphic rank one torsion-free groups.

Neat subgroups are just those without proper essential extensions in the containing group and therefore, from a purely module-theoretic point of view, neatness is a more natural concept than purity. Thus we are led to classify those abelian groups having the property that every neat subgroup is a direct summand (Theorem 1). As an application of this result, we classify the quasi-injective abelian groups (Theorem 2).

2. Preliminaries

By a group we shall mean an additively written abelian group. If A is a subgroup of G, then A is neat in G if and only if $pG \cap A = pA$ for all primes p; A is pure in G if and only if the equation $p^nG \cap A = p^nA$ holds for all primes p and all positive integers n. A group G has Property N if and only if every neat subgroup of G is a direct summand. In our discussions we will often use the fact that direct summands are pure.

For any group G, tG and G_p will denote the maximal torsion subgroup of G and the p-primary component of G, respectively. We use the symbol + to denote direct sums. Occasionally we will refer to

^{*)} This paper was prepared while the author was a National Science Foundation Trainee Fellow. The author expresses appreciation to Professor Charles K. Megibben for suggesting this problem.

Lemma 1. If G satisfies Property N and if H is a direct summand of G, then H also satisfies Property N.

PROOF. Neatness of A in H implies neatness in G. Thus G = A + B for some subgroup B of G and $H = A + (B \cap H)$.

3. Torsion groups with Property N

Proposition 1. If a p-group G satisfies Property N, then either G is divisible or (*) G = H + K where H is the direct sum of cyclic groups of order p^n and K is the direct sum of cyclic groups of order p^{n+1} .

PROOF. By Theorem A, a p-group satisfying our property must have a decomposition G = D + B where D is divisible and B is bounded. To see that one of D or B is zero, we assume the existence of a quasicyclic direct summand D' of D and a cyclic summand C of B having order p^n for some positive integer n. Let G' = D' + C. If $d \in D'$ is of order p^{n+1} and c is a generator of C, then the subgroup A, generated by (d, c), is neat in G' but not pure in G'. Thus A is not a direct summand of G' and G' does not satisfy Property N. According to Lemma 1, G does not satisfy our property. This contradiction forces us to conclude that either D or B is zero, i.e., either G is bounded or G is divisible.

In the case G is bounded and B_1 and B_2 are cyclic summands of G having orders p^n and p^{n+m} , respectively, we assume that m>1. Let b_1 generate B_1 and b_2 generate B_2 . Then the subgroup of $G'=B_1+B_2$ generated by (b_1,pb_2) is neat but not pure in G'. Again, this yields a contradiction and we have forced to conclude that $m \le 1$. For the converse of Proposition 1 we need

Lemma 2. If a p-group has a decomposition (*), then every neat subgroup is pure.

PROOF. Let $\{H_i: i \in I\}$ denote the cyclic summands of H having order p^n and $\{K_j: j \in J\}$ those of K having order p^{n+1} . Let A be neat in G. Note that, since p^kG is zero for all $k \ge n+1$, $p^kG \cap A = p^kA$ for all such k. Thus we now assume that $p^mG \cap A = p^mA$ for some m, $1 \le m < n$. If $p^{m+1}x \in A$ for some x in G, then, by assumption, there is an $a \in A$ satisfying $px - a \in G[p^m]$. If $(a)_i$ and $(x)_i$ denote the i-th coordinates of a and x, respectively, then $p(x)_i - (a)_i \in H_i[p^m] = p^{n-m}H_i \subseteq pH_i$. Thus $(a)_i$ is contained in pH_i for each $i \in I$. Similarly, $(a)_j$ is contained in pK_j for each $j \in J$. Consequently, there is a $g \in G$ with pg = a. By the neatness of A, we are guaranteed an element $a' \in A$ satisfying pg = a = pa'. But then $p^{m+1}x = p^{m+1}a' \in p^{m+1}A$ and A is pure in G.

We now have the converse of Proposition 1 in

Proposition 2. If a p-group is divisible or has a decomposition (*), then G satisfies Property N.

PROOF. Since every neat subgroup of a divisible group is divisible, we conclude that our class contains the divisible groups. So suppose that G has a decomposition (*) and that A is neat in G. Then A is pure by the previous lemma and A is a direct summand since A is bounded (KULIKOV [2]).

We are now able to give the main result of this section.

Proposition 3. A torsion group G satisfies Property N if and only if each p-primary component is divisible or has a decomposition (*).

PROOF. The necessity follows from Lemma 1 and Proposition 1. For the sufficiency suppose that A is neat in G and that each G_p is divisible or enjoys a decomposition (*). As A_p is neat in G_p for each p, Proposition 2 implies $G_p = A_p + B_p$ for some subgroup B_p and thus G = A + B where B is the direct sum of the complements B_p .

4. Arbitrary groups with Property N.

Proposition 4. If G = D + E where D is divisible and E is the direct sum of a finite number of mutually isomorphic rank one torsion-free groups, then G satisfies Property N.

PROOF. Let A be neat in G. Since tA is divisible, A = tA + B where B is torsion-free. As $tG \cap B$ is zero, we may argue in the usual way that G = tG + H where B is a subgroup of H. Now B is neat, hence pure, in the torsion-free H. From Theorem A we conclude that H = B + H' and as a consequence, G = tG + H = (tA + G') + (B + H') = A + (G' + H'); that is, G has Property N

Theorem 1. An abelian group G has Property N if and only if G has one of the following forms:

(1'). G is a torsion group in which, for each prime p, G_p is either divisible or else of the form H+K where H is a direct sum of cyclic groups of order p^n and K is a direct sum of cyclic groups of order p^{n+1} .

(2). G = D + E where D is divisible and E is the direct sum of a finite number of mutually isomorphic rank one torsion-free groups.

PROOF. Let G satisfy Property N. If G is torsion, we apply Proposition 3 and find that G is of the form (1'). If, on the other hand, G is not torsion, then Theorem A implies that G has the form (2). (We have used the fact that if G has Property N, then pure subgroups of G are direct summands.) Proposition 3 and Proposition 4 yield the converse.

5. A characterization of quasi-injective abelian groups

We define an abelian group G to be *quasi-injective* if and only if each homomorphism of any subgroup A into G can be extended to a homomorphism of G into G. A subgroup A of G is *closed* in case A has no proper essential extensions in G. It is well known that A is neat if and only if A is closed Thus the class of abelian groups whose neat subgroups split off contains the quasi-injectives This follows from

Thorem B. (FAITH [1].) If G is quasi-injective then every closed subgroup of G is a direct summand.

Proposition 5. If G is quasi-injective, then either G is divisible or (**) G is torsion and each G_p is the direct sum of mutually isomorphic cocyclic groups.

PROOF. It suffices to apply Theorem 1 and Lemma 1 to G after showing that none of the following types of groups are quasi-injective.

(a) G = H + K where H is cyclic of order p^n and K is cyclic of order p^{n+1} .

(b) G is reduced torsion-free group having rank one.

For the case (a), we let k and h generate K and H, respectively. If H' is the subgroup of G generated by pk, then we define a homomorphism from H' to G by f(pk)=h. It is easy to see that no extension of f could be defined at the generator k. Thus f does not extend.

In (b) we view G as a subgroup of the additive group of rationals Q and then suppose that $1/t \in Q - G$ while $0 \ne m/n \in G$. Letting A denote the subgroup of G generated by $m^2 t/n$ we map A into G by defining $f(m^2 t/n) = m/n$. Assume that f extends to an endomorphism F of G and that $F(m) = x \in G$. Then $f(m^2 t) = m$ while $F(m^2 t) = mtx$. We now conclude that $x = 1/t \in G$, contrary to assumption. Consequently, G is not quasi-injective.

Proposition 6. If G satisfies (**) then G is quasi-injective.

PROOF. Let A be a subgroup of G and f a homomorphism from A into G. Then, for each prime p, we have induced homomorphisms $f_p \colon A_p \to G_p$. As G is the direct sum of its components G_p , extending each f_p to an endomorphism F_p of G_p is sufficient to extend f to an endomorphism of G. Now since divisible groups are quasi-injective, we need only consider the components of G which are direct sums of cyclic groups of order, say, p^n . Let G denote the minimal injective extension of G_p . Then G is a divisible G-group whose fully invariant subgroups are those of the form G-group integer. Consequently G-group is fully invariant in G. The injectivity of G-group allows us to extend G-group in endomorphism G-group in the injectivity of G-group integer. Consequently G-group is fully invariant in G-group in the injectivity of G-group integer. Consequently G-group is fully invariant in G-group in G-group integer.

Proposition 5 and Proposition 6 give us

Thorem 2. G is quasi-injective if and only if G is divisible or G satisfies (**).

As a final note we observe that those groups in which every subgroup is neat are precisely the elementary groups. This follows from the argument given in Theorem 4 of [3].

Bibliography

- C. Faith, Lectures on Injective Modules and Quotient Rings, Lecture Notes in Mathematics, 49, New York, 1967.
- [2] L. Fuchs, Infinite Abelian Groups, I, New York, 1970.

[3] L. Fuchs, A. Kertész, T. Szele, Abelian groups in which every serving subgroup is a direct summand., *Publ. Math. (Debrecen)* 3, (1953), 95—105.

[4] A. Kertész, On groups every subgroup of which is a direct summand., *Publ. Math. (Debrecen)* 2, 1951, 74—75.

(Received May 18, 1972.)