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1. Introduction

Y. Akizukl [1] proved the well-known theorem that a commutative ring with
an identity satisfies the descending chain condition if and only if it satisfies the
ascending chain condition and every proper prime ideal is maximal. The purpose
of this paper is to obtain analogues of the Second and Third Isomorphism Theorems,
Schreier’s Refinement Theorem, and the Jordan—Hdolder Theorem for operator
semigroups, and use these results to extend Akizuki’s Theorem to a large class of
semirings.

2. Operator Semigroups and Quotient Structures

Many different definitions of an operator semigroup appear in the literature.
The class of operator semigroups considered in this paper is contained in the class
studied by A. W. Goldie [6], and is defined as follows:

Definition 1. 1. An operator semigroup is a triple (G, M, .) consisting of an
associative semigroup with identity 1, an operator set M, and a mapping from G XM
into G such that

(1) (g,g)m=(g,m)(g,m),

(2) Im=1
for each g;€ G, me M. This system will be referred to as an M-semigroup G.

Definition 1.2. Let G be an M-semigroup. A subset H of G is called an
M-subsemigroup of G it

(l) hl hz € H$

(2) 1€H, where | is the identity of G,

(3) hymeH,
for each h;e H, me M,

Definition 1.3. Let G; and G, be M-semigroups. A mapping 7:G, ~G, is
called a homomorphism provided

(1) (g:182)n=(g:m)(g2m),

(2) (gymn=(gmm,
for each g;€G,, mé M. If 5 is one-to-one and onto G,, y is called an isomorphism,
and G, and G, are said to be isomorphic, denoted G, =G,.
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Definition 1.4. Let G, and G, be M-semigroups and 3:G; —G, a homo-
morphism. Then n~!({1})={g€ G, |gn=1} is called the kernel of n, and denoted
ker n.

Of special interest to P. DUBREIL [5] and N. CHAPTAL [4] was a subsemigroup
H of a semigroup G such that hgc H, hc H implies g€ H. S. BOURNE [3], M. HEN-
RIKSON [7], D. R. LATORE [9], and P. J. ALLEN [2] studied ideals in a semiring where
the additive structure of the ideal satisfied the above condition, and it is their ter-
minology that is used here.

Definition 1. 5. Let H be an M-subsemigroup of an M-semigroup G. H is
called a k— M-subsemigroup of G (or is k in G) provided:

If g€ G, he H, then gh or hg € H implies that g€ H.

If N and H are subsets of an M-semigroup G, then NH={nhjn€ N, hc H}. The
cosets {g}H and H {g} are denoted by gH and Hg, respectively.

Definition 1.6. An M-subsemigroup H of an M-semigroup G is said to be
normal in G, denoted H< G, if gH= Hg for each g€ G.
The proof of the following well-known lemma is straightforward and is omitted.

Lemma 1.7. Let G, and G, be M-semigroups and n:G, -G, a homomorphism
onto G,. Then

(1) kern is a k— M-subsemigroup of G,.

(2) If H, is an M-subsemigroup of G, then H,n is an M-subsemigroup of G,.
Furthermore, H,<a G, implies Hin<G,.

(3) If H, is an M-subsemigroup of G,, then n~'(H,) is an M-subsemigroup
of G,. Furthermore, H, is k in G, if and only if n='(H,) is k in G,.

In the theory of operator groups it is well-known that the kernel of a homo-
morphism is normal and that an operator group is normal in itself. The following
example shows that these facts are not in general true for operator semigroups.

Example 1.8. Let G={1, a, b} and let multiplication in G be defined by the
following table:

Taking M=0, G is an M-semigroup. Since aG={a} and Ga= {a, b}, G is not
normal in G. The mapping 5:G — {1} defined by gn=1, for each g€ G, is a homo-
morphism with kernel G. Hence ker » is not normal in G.

Throughout this paper, quotient structures are studied with respect to the fol-
lowing congruence, which was first defined by Dubreil for commutative semigroups.
Let H be a normal M-subsemigroup of an M-semigroup G. Define a relation R on
G as follows: g, Rg, if there exist h;¢ H such that g, h,=g,h,. Since H<G, it
follows that R is a congruence. If g€ G, then [g] denotes the congruence class deter-
mined by g, i.e., [g]={x€G|xRg}. Then G/R={[g]|g€ G}, together with the binary
composition [g,][g.]=[g,g,), is a semigroup. Since this congruence is dependent
on H, it is standard to denote G/R by G/H. Let g;€G such that [g,]=[g,]. There
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exist h;€ H such that g, h, =g, h,. Hence (g, h,)m=(g,h,)m, where me M, and it
follows that (g, m)(h,m)=(g,m)(h,m). Therefore [g,m]=[g,m]. This shows that
the operator multiplication defined by [g]m=[gm] is well-defined. The identity of
G/H is (1], and [1Jm=[1m]=[1]. ((g,][g:Dm=([2: &:]m) =[(g, 82)m]=[(g, m) (g, m)] =
=[g,m][g,m]. Consequently, with this operator multiplication G/H is an M-semi-
group, called an M-quotient semigroup. In particular, if G and H are groups, the
above development yields the standard M-factor group G/H={gH|g€G.} In the
general case Bourne and LaTore did not characterize the congruence classes, but did
observe that they need not be cosets. The following lemma presents a characterization
of the congruence classes.

Lemma 1.9. Let H be a normal M-subsemigroup of an M-semigroup G. Let
[g]€ G/H and g;€[g). Then

(1) g HNgH #0,

(2) g, €lg] implies g, H< 2],

(3) [gl= U gH.
g, €lgl

Proor. (1) Since g, and g, are in the same congruence class, there exist ;€ H
such that g, h, =g, h,.

(2) Let g, h€g, H. Since (g, h)1 =g, h, g, h and g, are in the same congruence
class, i.e., g, h<[g].

(3) From (2) it follows that | g, H < [g].
Since g; € g;H, equality follows. o

Consequently, any congruence class is characterized as the union of a collection
of cosets #={g H}, where

aH, ggHeRB, g, H¢AB imply g HNgH =0, g, HNg H = .

As can be seen by Example 1. 8, if H is not normal in G, then g, HNg  H = 0
and g, HNgyH+0 do not imply that g, HNg, H # 0.

Definition 1. 10. A homomorphism 5 from an M-semigroup G,; onto an
M-semigroup G, is called maximal if for each a€ G, there exists g,€n~"({a}) such
that g€n~"'({a}) implies g ker n S g, ker .

Lemma 1. 11. If n is @ maximal homomorphism from an M-semigroup G, onto
an M-semigroup G, such that ker n is normal in G,, then each [g]€G,/kern is a
coset.

Proor. If g;€[g], then gin=gn=acG,. There exists g,én~"'({a}) such that
x kernSg, kern for each xen~'({a}). Since g;cn~'({a}), g kernSg,kern. In
particular, gker nE< g, kern, and this implies that g,€[g]. From Lemma 1.9 it
follows that [g] = | g;kern S g, kern S [g]. Therefore [g]=g, ker 1.

. oglelg] - .
A less restrictive class of homomorphisms is now defined.

Definition 1. 12. Let n be a homomorphism from an M-semigroup G, onto an
M-semigroup G,. n is called semimaximal if g, n=g,n implies g, ker n Mg, ker n = 0.
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In view of Lemma 1.9, it 1s observed that a maximal homomorphism with
normal kernel is semimaximal. The following example shows that the converse is
not true in general.

Example 1.13. Let A=/{x|x is real and 1=x=2} and B={x|x is real and
2<x=3}. Let G = AUB, and define multiplication on G as follows:

For a;c A, b€ B, a,a,=max {a,, a,}, byb;=max {b, b,}, and a,b,=b,a,=
= max {a, +1, b;}. Then G is an M-semigroup with M=0. H={l, 2} is an M-semi-
group. Define n:G — H by a n=1 for each a€ A, bn=2 for each b€ B.  is a homo-
morphism and kern=A. aker n={x€A|x=a} and b ker n={x€B|x=b}. Hence
n is semimaximal. Since G/ker n={A4, B} and B is not a coset, y is not maximal.

Theorem 1. 14. Let G be an M-semigroup and H<1G. Define v:G ~G/H by
gv=[g). Then

(1) v is @ homomorphism onto G/H,

(2) H<Sker v,

(3) His k in G if and only if H=Kker v,

(4) v is semimaximal,

(5) if Hisk in G and Hc G, then G/H #1.

ProOOF. The straightforward proofs of (1) and (2) are omitted.

(3) If H=ker v, then H is kK by Lemma 1. 7. Conversely, assume H is kK in G.
By (2) it suffices to show that ker vE H. Let u<ker v. Then u€[l1], so there exist
h;€ H such that uh, =h,. Since H is k in G, it follows that u€ H.

(4) Let g;€G, and assume g,v=g,v. Then [g,]=[g,]. By Lemma 1.9,
g HMNg,H # 0. Thus v is semimaximal, since HS Kker v.

(5) Since ker v=HCG, it follows that G/H#1.

Definition 1.15. The map v:G —~G/H given in Theorem 1. 14 is called the
natural homomorphism of G onto G/H.

Theorem 1. 16. (Fundamental Theorem of Homomorphisms.) Let n be a semi-
maximal homomorphism from an M-semigroup G, onto an M-semigroup G, such that
ker n<G,. Then G,/ker n=G,.

PROOF. 1:G,/ker n -G, defined by [g]i=gn is a homomorphism onto G,. If
[g,]171=[g,]7, then g, n=g, n, and semimaximality implies that g, ker n (" g, ker n = 0.
Hence [g,]=[g,], and 7] is one-to-one.

Corollary 1.17. Let H be a normal M-subsemigroup of an M-semigroup G,
and let v:G —-G/H be the natural homomorphism. If ker v=aG, then G/ker v=
>~ G/H.

Proor. Applying the Fundamental Theorem to the semimaximal homomorphism
v gives the desired result.
The following lemmas are needed to prove an analogue of the Lattice Theorem.

Lemma 1. 18. Let n be a semimaximal homomorphism from an M-semigroup
G, onto an M-semigroup G,, and let H<G. If H is k in G and ker n S H, then

(1) H=n""(Hn),

(2) Hypis kin G,.
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ProoF. (1) Clearly HZ =" (Hn). Let g€n="'(Hn). Then gn € Hy, so there exists
h€ H such that An=gn. Since n is semimaximal, /4 ker n (g ker n # 0, and since
kernS H, hHgH # 0. Consequently, g€ H, since H is k in G.

(2) Let hn€ Hy and gn€G,, where hngn € Hy. Thus h, hge€n~'(Hn)=H. Since
His k in G, it follows that g € H and hence that gn € Hy. Similarly gnhn € Hy implies
gn < Hny.

Lemma 1. 19. Ler n be a semimaximal homomorphism from an M-semigroup
G, onto an M-semigroup G, and let {H} be the collection of all k — M-subsemigroups
of G, that contain ker . The mapping H — Hy is one-to-one of {H} onto the set of
all k — M-subsemigroups of G,.

Proor. That H -~ Hn is well-defined follows from Lemma 1. 18, and Lemma 1. 7
implies the mapping is onto. Let H,, H,€{H}, where Hyn=H,n. Lemma 1. 18
yields H,= H,. Therefore the mapping is one-to-one.

Theorem 1. 20. (Lattice Theorem.) Let G be an M-semigroup and H a normal
k — M-subsemigroup of G. Then any k — M-subsemigroup of G/H is of the form N/H,
where N is a k — M-subsemigroup of G containing H. If N, and N, are distinct k — M-
subsemigroups of G containing H, then N,/H and N,|/H are distinct k — M-subsemi-
groups of G/H. If N<aG, then NJH<G/H.

Proor. Apply Lemma 1. 19 to the natural homomorphism v:G —~G/H. Any
k — M-subsemigroup of G/H is of the form Nv, where N is a k— M-subsemigroup
of G and contains H. Let g€[n], where n€ N. Then there exists #;€ H such that
gh,=nh,. Since HE N and N is k in G, it follows that g€ N. Then Nv={[n]jne N} =
= {[n]"N|ne N} = N/H. The last remark follows from Lemma 1. 7.

Lemma 1.21. Let n, be a semimaximal homomorphism from an M-semigroup
G, onto an M-semigroup G, and n, a semimaximal homomorphism from G, onto an
M-semigroup Gy. Then nyn, is a semimaximal homomorphism.

PROOF. Let gy, g; €G, and assume g, n,n,=gin,n,. Then (g, nIn>=(g1n)n2,
so that (g,n,) ker n, N (gin,) ker n, = 0. Hence there exist u, n,, uyn, €ker n, such

that (g,n,)(u,n,)=(gyn,)(uin,), which implies (g,u,)n,=(gju;)n,. Therefore
(g,u,) ker n, N(giuy) ker n, # 0. Since ker n, S ker n,n,. it follows that

(g uy) kerpyn, (g uy) ker gy, n, = 0.
ny, uy€kern,n,, which implies g, ker n,n, g} ker n,n, = 0.

Theorem 1. 22. (First Isomorphism Theorem.) Ler n be a semimaximal homo-
morphism from an M-semigroup G, onto an M-semigroup G,. Let H be a normal
k — M-subsemigroup of G, that contains kern. Then G,/H=G,/Hn.

Proor. Lemma 1.7 and Lemma 1. 18 imply Hn<G,. Let v be the natural
homomorphism from G, onto G,/Hn. By Theorem 1. 14, ker v=Hpy. Clearly
H< ker nv. Let g€ker yv. Then gn€ker v=Hn. By Lemma 1. 18, g€ H. Therefore
H=ker nv. Applying the Fundamental Theorem to the semimaximal homomorphism
nv gives the desired result.
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Corollary 1.23. If N and H are normal k— M-subsemigroups of an M-semi-
group G, and NS H, then

.
B
- S
N
PrOOF. Applying the First Isomorphism Theorem to the natural homomorphism
G
v. G—'W
gives
G
G _ N H
? = _Hl" ’ and Hv = F

by the Lattice Theorem.

3. Isomorphism Theorems

Definition 2. 1. Let G, and G, be M-subsemlgroups of an M-semigroup G.
G, is said to be related to G, provnded

If g;, g/ €G; such that g,g,=g}g>, then there exist a, b€G, (G, such that
g1a=gb.

G, is said to be closely related to G, if G, is related to every M-subsemigroup
of G,. If G, is related (closely related) to G,, and G, is related (closely related) to G, ,
then G, and G, are said to be related (closely related).

Any M-semigroup is closely related to each of its M-subsemigroups, and all
M-subgroups of an M- semigroup are related.

Example 2.2. Let G={l,a, b, ¢, d, e, f, g} and let multiplication in G be given
by the following table:

]labcdefg
iii-eabed et 8
ala a aaaaaa
2l & oo v ¥
E{e @' ce-w 8 8 d
dld adade aa
ele ae aeeaa
flfafaaafg
gg a gaaagyg.

Then G is an M-semigroup with M=0. Let G;={1,b,c}, G,={1,b,d, ¢},
Gy={l,b,f,g}. Then each G; is a normal k—M-subsemigroup of G. It can be
shown that G, is related to G,, but not closely related, and G, is not related to G,.
G, is not related to G; and Gj is not related to G,.
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Example 2.3. Let G={x|x is real and 0=x=1}, and let M=G. Define multi-
plication in G by g,g,=max {g,, g,}, and define operator multiplication by gm=
=min {g, m}. Then G is an M-semigroup, and if H is an M-subsemigroup of G,
then H={x€G|x=r} or H={x€G|x<r}, where r€G. Then every M-subsemigroup
of G is k in G and normal in G, and any pair are closely related.

The following lemmas concerning relatedness are crucial to the development in
this paper.

Lemma 2.4, Let G; be M-subsemigroups of an M-semigroup G such that G, is
related to G,. Let H be an M-subsemigroup of G, such that G, G, S H. Then H is
related to G,.

PrROOF. H(1G, = G, G,, and the result follows.

Lemma 2. 5. Let n be a semimaximal homomorphism from an M-semigroup G,
onto an M-semigroup G,. If H, and H, are M-subsemigroups of G, such that n='(H,)
is related to n~="(H,), then H, is related to H, .

PROOF. Let iy, hi € H;, where hyh,=hih3. There exist g;, g/ €n~' (H,) such that
gn=h; and g/n=~h;. Then (g,2,)n=(g1g5)n. Hence there exist #;€ker n such that
(g122)u; =(g182)u, and therefore g,(g,u,)=g1(g3u,). g2u, and giu, are both in
n~'(H,), so there exist @, ben~1(H,) N\n~'(H,) such that g,a=g1b. Then h,(an)=
=h;i(bn), where an, by € H, "\ H,. Therefore H, is related to H,.

If G, and G, are M-subsemigroups of an M-semigroup G, and G,<G,G,,
then G, G, =G, G, is the M-subsemigroup generated by G, and G,.

Theorem 2. 6. (Second Isomorphism Theorem.) Let G, and G, be M-sub-
semigroups of an M-semigroup G such that G, is related to G,, G,<G,G,, and G,
G, are k in G,G,. Then

() (G,[1G,) = Gy,

() G,6,/G; = G/G,NG,.

ProoF. (1) Let g,€G,, g,,€G,1G;. Then g,8,,=¢,8,, Where g, €G,, since
G,<1G,G,. Also g,€G,, since G, is k in G,;G,. Therefore g,(G,NG;) &
S (G,MNG,)g,. The reverse inclusion is similarly proved and it follows that

(G, NG,) = G;.

(2) Define n:G, -G,G,/G, by g,n=[g,). n is clearly a homomorphism. An
element of G, G,/G, is the union of cosets of the form g, g,G,, where g;€G;. Since
218:G,52,G,, nis onto. Clearly G, NG, S ker n. If ucker 5, then uG, NG, # 0.
Hence G, being k in G,G, implies u€G,. Thus kern = G, NG,. If gyn=g1n,
theng, G, g1 G, # 0. Then G, related to G, implies g, (G, N G,) N g1 (G, N G,) # 0.
Hence n is semimaximal. The Fundamental Theorem now gives the conclusion.

Definition 2.7. Let H be an M-subsemigroup of an M-semigroup G, and let
{H} be the collection of all k— M-subsemigroups of G that contain H. The k-closure
of H in G, denotes H, is defined by H = N {Ha}.

Observe that H always exists, since G is k in itself.
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Theorem 2.8. Let H be a normal M-subsemigroup of an M-semigroup G and
v:G —~G/H the natural homomorphism. Then

(1) H={geG|gHNH =0},

(2) H=kerv.

PrOOF. (1) Let F = {gcG|gHNH = 0}. Clearly 1€F. Let f;€ F. There exist
heH such that fih,=hy, foh,=hy. Then hyhy=(f1h)(f2h)=f;(h, fz)”z*‘
=/ (S2h)ha=(f1 f2)(hshy). Thus (fyL)H(OVH = @ which implies f; /€ F. If
meM, then (fih)m=hym and (fim)(hym)=hym. Thus (fym)H(\H = 0, so
fimé F. Therefore F is an M-subsemigroup of G. Let g€ G such that gf; € F. Then
he(gfy)=h, for some hg, h, € H. Now hg(gf;)h, =h,hy, which implies (hgg)( f, /)=
=hg. Hence (ghg)hy=hg, and it follows that gH(H = 0. Thus g€ F, and a sumlar
argument shows that f, g€ F implies g€ F. Thus Fis k in G.

H = N {Hxz}, where {Hz} is the collection of all k— M-subsemigroups of G
that contain H. Fe {Hz} so HS F. If f, € F, then f,h,=h,, hy¢ H. HS Hu for each
” impliesﬁf, € Hx for each =, since each is k in G. Thus f; € " {Hx}, and it follows
that F=H.

(2) ker v is k and contains H, so HSker v, If ué€kerv, then uH(\H = 0.
Thus u€ H by (1). Therefore H=Kker v.

Definition 2.9. An M-subsemlgroup H of an M-semigroup G is said to be
k-normal in G, denoted H-=::G if both H and H are normal i m G.
The next example shows that H<1 G does not imply HaG.

Example 2. 10. Let B be the M-semigroup of Example 1.8, and let 4 be a
non-trivial, commutative M-semigroup (M=@). Let 0 denote an element not in
AUUB, and let G, = AU {0}, G, = B {0}. Define 00=0 and x0=0x=0 for each
x€A'JB. Then G; and G, are M-semigroups. Let G={(g,. g,)|g;€G;}, and define

(g1, 22)(g1,82)=(g,81,8:82)- G is then an M-semigroup. H={(g,,0)\g,€G,}
JA(1, 1)} is an M-subsemigroup of G, and since (g,, 0)(x, y)=(g,x, 0)=(xg,,0)=
=(x, ¥)(g;,0), H=G. Clearly H=G. (0, a)G={(0, 0), (0, @)} and

G(O’ a)= {(O’ 0)’ (0! a)a (09 b)},

so that G=H is not normal in G.
The following corollary of Theorem 2. 8 is crucial in the proof of the Third
Isomorphism Theorem.

Corollary 2. 11. Let H be an M-subsemigroup of an M-semigroup G. If H-:‘J G,
then G/H=G/H.

Proor. Corollary 1. 17 and Theorem 2. 8 give the conclusion.

Theorem 2. 12. (Third Isomorphism Theorem.) Let G be an M-semigroup, and
let G, G, be k — M-subsemigroups of G that are closely related. Let Gi<1G,, G3<G,,
and further assume that (G, G3)G} < (G,N GG, (G1NG,)G; k- (G,NG,)G;.
Then

(G, NGYGy _ (G,NG,)G;
(G,NG3)GY = (GINGy)G;
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Proor. Let F be the k-closure of (G, (1G3)G] in (G,1G,)Gy. Since F is an
M-subsemigroup of G,, G, is related to F. F(G, € G,(G, € G,, so GG,
is related to F by Lemma 2. 4. From (G, N G3)G; € F S (G, G,)G1, it follows
that (G,MNG,)F = (G, G,)G;. The Second Isomorphism Theorem applied to

G,MNG, and Fyields (G,NG,)NF=G,NF=G,(G, and

GG, _ (GiNGHF _ (GGG
G,NF ~ F = F :

Corollary 2. 11 gives

(G,NG)Gy _ (G,[1G,)G;

F TG NGDGL
Thus
) (G,NG)G] _ G,NG,
(G,NG3)G; ~ G,NF°

The following argument will show (G, 1 G3)G; G, < G, G,. LetgeG, N G,,
he(G,MNG3)G1NG,. Then gh=h"g, where ' €(G, () G3)G}, since (G, G3)G] <
<1 G, G,. Since g, h€G, and G, is k, it is also true that 4'€G,. Thus

gl(G,NG3)G1 NG, € [(G,NG3)G;MNG,lg,

and the reverse inclusion is proved similarly.
FM G, is the k-closure of (G, G3)G1G, in G,(G,, for F[G, is k in
G, G, and contains (G, M1 G3)G] N G,. Thus FG, contains the k-closure. Con-
versely, let x€ F(G,. Since F is the k-closure of (G, [1G3)G], there exist g, g’¢
£(G,MNG3)GY such that xg=g’. G, is related to (G, [1G3)Gy, so there exist a, b€
£(G, N G3)G1 NG, such that xa=b. Hence x is in the k-closure of (G, N G3)G] N G,.
Therefore, since G, F<= G,(1G,,

2 G\NG, _ G,NG,
) G,NF ~ (G,NG3)G NG,

It will now be shown that (G, (1G3)G; NG, = (G, NG)(G11G,). Let ab¢
£(G;NG3)G1NG,,whereacG,NG3,beGy. Thenabe G,,50b€G,. Thus b€ Gy N
M G,, which implies (G, 1 G3)G1 NG, € (G, N G3)(G; N G,). The reverse inclusion
is clear.

Combining (1) and (2) yields

3) Lo O, 10 T
G:NGG] ~ (GNG)(GING)

A symmetrical argument proves

@ GiNG)G: _  (GiNGy)
GiNG)G: ~ (GING)(G,NGy)
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It is now seen that (G, NG3)(G;NG,) = (G;NG,)(G,NG3). Let
abe(G,MG3)(G;MNG,),
where a€ G, NG5, b€GiNG,. Then ab=>b"a, where b’ € G, because Gi<2G,. Since
ab € G, a€ G, it follows that &’ € G, . Thus (G, N G3)(G; N G,) S (G, N G,)(G, N G3).

A similar argument shows the reverse inclusion.
Combining (3) and (4) now gives the desired result.

Definition 2.13. Let G=G,2G,2-2G,2G,.;=1 be a sequence of
M-subsemigroups of an M-semigroup G such that G, ;<2 G;. The sequence is called
a normal series for G. The M-quotient semigroups G;/G;,, are called the factors
of the series, and the G; are the rerms. If each G; is k in G, the series is called a normal
k-series. Two normal series of G are said to be equivalent if there exists a one-to-one
correspondence between the factors of the two series such that the corresponding
factors are isomorphic. A normal series is a refinement of a second normal series if
all of the terms of the latter are included in those of the former.

Theorem 2. 14. (Schreier’s Refinement Theorem.) Let

() 6=6,2G,2:+2G,. =1,

2 G=H,2H,2--2H,,,=1
be two normal k-series of an M-semigroup G such that each G; and H; are closely
related. Further assume that

(GiNH;41)Gisy < (GNH)Groy and (Gioy NH)Hyey < (GNH)H,

Then the two series have equivalent refinements.

PrOOF. Let

Gij - (Gl'nHj)Gi+19

H; =(GNH)H;,,.
Then

(1) G6=G;12G;,2 :—)Gl,t+l

=G212G2 2 Gz,ru

= G, 26322"'2Gs,r+1 =1,
(2') G = HugHug“'QH:,sn
— Hzigszg‘“gHz,sn

= Hngng”' gHs,sH =1

are refinements of (1) and (2), respectively. By the Third Isomorphism Theorem
applied G;, H;, G;., H;4,, it follows that

Gy _ (GNH)G., _ (GNH)H., _ Hy
Gl.}+1 (GlnHj+l)G£+1 . (Gi+lnHj)Hj+1 Hj,l+1
Therefore (1”) and (2’) are equivalent.
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Definition 2. 15. A composition series for an M-semigroup G is a normal
series
G=0G;D0G;2:-0G,,1=1

with the property that each G; is maximal in G;,,;i.e., if H=G;and G;,, S HSG;,
either H=G,; or H=G,;, . If each term is k in G, the series is called a composition
k-series.

In view of Theorem 1. 14, a composition k-series has no trivial factors.

Theorem 2. 16. (Jordan—HGolder.) Let
(0)) G =G 00D:0D0, =1,
(2) G=HIDH23”':)H‘+I=1,

be two composition k-series for an M-semigroup G such that each G, and H  are closely
!_4_ = | el o waoli.n &l s Y A TE Y - ‘el i AVal wa

re '
‘re!ared. Further assume that (G;(\H;;)G;., < (G, H;)G;,, and

k
(Gip  NH)H; < (G H)H 4.
Then the two series are equivalent.

PrOOF. No factor in either series =1. A refinement can be obtained only by
inserting duplicates. Therefore a reminement has the same factors <1 as the series
which it refines. By Schreier’s Refinement Theorem (1) and (2) have equivalent
refinements. In the one-to-one correspondence between the factors of the refinements
with paired factors isomorphic, the factors of (1) and (2) must be paired. Hence t=s
and the series are equivalent.

In particular, let G be a commutative M-semigroup such that any two M-sub-
semigroups of G are related. Then any two normal k-series for G have equivalent
refinements, and any two composition k-series for G are equivalent.

Definition 2. 17. An M-semigroup G satisfies the descending chain condition
(DCC) provided:

G126G22+2G,2Gu 1 2
is a descending sequence of M-subsemigroups of G implies there exists N such that

n= N implies G,=Gy.
G satisfies the ascending chain condition (ACC) provided:

G1SG, S+ SGEGpy S
is a sequence of M-subsemigroups of G implies there exists N such that n=N im-
plies G,=Gy.

Theorem 2. 18. Let G be a commutative M-semigroup with the property that
any two M-subsemigroups of G are related and each is k in G. Then G has a composi-
tion series if and only if G satisfies the ACC and the DCC.

PROOF. Assume that G satisfies the ACC and the DCC. Let H#1 be any term
of a normal series for G. Either 1 is maximal in H or there exists an M-subsemigroup
H, of H such that 1 ¢ H, c H. In the latter case either H, is maximal in H or there
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exists an M-subsemigroup H, of H such that H, < H, < H. This process must stop
after a finite number of steps, for otherwise the ACC would be contradicted. Thus
any term #1 of a normal series must contain a maximal M-subsemigroup. Then G
contains a maximal M-subsemigroup G,, G, a maximal M-subsemigroup G,, etc.
By the DCC, G, ,=1 for s finite. Hence

(D G =0, 00;0:+D0G,.; =1

is a composition series.
Conversely, assume that G has the composition series (1). If either the ACC or
DCC fail, then there exists a sequence

(2) Ga=H,DH D« iDHia=1

of M-subsemigroups of G. Then (1) and (2) have equivalent refinements. This im-
plies that there are more than s non-trivial factors of (1), a contradiction.

4. Semirings and semimodules

Definition 3. 1. A set R together with two associative binary compositions
called addition and multiplication (denoted by + and ., respectively) is a semiring
provided:

(1) addition is commutative,

(2) there exists 0€ R such that x+0 = x and x0=0x=0 for each x¢ R,

(3) multiplication distributes over addition both from the left and from the right.

Definition 3. 2. If Ris a commutative semiring and R— {0} is a multiplicative
group, then R is called a semifield.

Definition 3. 3. A subset 7 of a semiring R is called an ideal if a, b¢I and
réR imply a+b,ar,racl.

Definition 3.4. An ideal / in a semiring R is called prime if a, bc R and abe ]
imply either a€l or be L. '

If1,, I,, ..., I, are ideals in a semiring R, then the ideal which they generate is
denoted by I,1,...1, and called the product of the ideals.

The proofs of the following three lemmas are the same as those given in ring
theory and are omitted.

Lemma 3. 5. Let R be a commutative semiring with identity. Then R is a semi-
field if and only if R has no proper, non-trivial ideals.

Lemma 3.6. Let R be a commutative semiring with identity. If 1, is an ideal of
R that is not prime, then there exist ideals 1,, I of R such that I, 1,, I, cI;, and
LIL,SI,.

Lemma 3.7. Let R be a commutative semiring with identity that satisfies the ACC.
Then every ideal of R contains a product of prime ideals.
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Definition 3.8. An R-semimodule is a commutative R-semigroup M (writ-
ten additively) such that the operator set R is a semiring and in addition to the
operator conditions

(1) (x+y)a = xa+ya,

(2) 0a=0,
it is also true that

(3) x(a+b) = xa+xb,

(4) x(ab)=(xa)b,

(5) x0=0,
for each @, b€ R, x, y€ M. If R has an identity 1 and if x1=x, for each x< M, then
M is called unitary.

Note that the R-semigroup R, where R is a semiring, is an R-semimodule, and is
unitary if R has an identity.

Lemma 3.9. (Modular Law.) Let H, L, and N be R-subsemimodules of an
R-semimodule M such that H is k in M and L= H. Then H(\(L+N) = L+(HIIN).

PrROOF. Let xée HN(L+N). Then x = y+z, where yeL, z€N, and y+:z€H.
Nowyée Hand Hiskin M,soz€ H. Thusz€ H(| N, and it follows that H N (L+N) S
C L+(HNN). The reverse inclusion is clear.

Theorem 3. 10. Letr M be an R-semimodule such that any R-submodule of M is
k. Let N be an R-subsemimodule of M. Then M satisfies the ACC (DCC) if and only
if the ACC (DCC) holds in both N and M/N.

Proor. If the ACC holds in M, it clearly must hold in N, and by the Lattice
Theorem, also in M/N.

Assume that N and M/N satisfy the ACC. If L, L"are L’-R-subsemimodules of
M such that LEL', L+ N=L"+N, LNN=L'NN, then L’= L’'N(L'+N)=L"'N
((L+N)=L+(L'(NN)=L+(L(N) = L. Let {L;} be an ascending sequence of
R-subsemimodules of M. To show that the sequence becomes constant after a
finite number of terms, it suffices to show that the ascending sequences {L;+ N},
{L;[TN} become constant after a finite number of terms. For the latter sequence
this follows from the ACC in N. For the former it follows from the ACC in M/N,
in view of the Lattice Theorem.

The theorem is similarly proved for the DCC.

Corollary 3.11. Let M be an R-semimodule such that any R-subsemimodule
of Miskin M. Let M, , M,, ..., M, be R-subsemimodules of M such that M = M+
+M,+--+M,and M, is related to M, +M,+---+M,_,. If each M, satisfies the
ACC (DCC), so does M.

Proor. The proof is by induction. The result is clear for n=1. Let n=2: i.e.,
M = M;+M,. By Theorem 3. 10, it suffices to show that M/M, satisfies the ACC

(DCC).
M _M+M, M,

M,T M, T MNOM,

and the last R-semimodule satisfies the ACC (DCC) by Theorem 3. 10. Thus the
ACC (DCC) holds in M/M,.
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Assume the result true for n—1. Consider M = M, +M,++--+M,. The above
argument for n=2 with M, replaced by (M, +M,+--+M,_,) and M, by M, gives
the desired result.

Lemma 3. 12. Let M be a unitary R-semimodule, where R is a semifield. Assume
that any two R-semimodules of M are related and that each is k in M. If M satisfies the
ACC, then M satisfies the DCC.

PRrOOF. Let x, € M, where x,; #0. x, R is an R-subsemimodule of M. If M=x, R,
there exists x, ¢ M—x; R. Then x; R+x,R is an R-subsemimodule of M properly
containing x, R. By this process an increasing sequence

3R x;R+x;RC x R+x;R+x3R C -

of R-subsemimodules of M is obtained. By the ACC, the sequence must become
constant. Hence M = x; R+x, R+ +x,R. Each x;R has no proper. non-trivial
R-subsemimodules, and so satisfies the DCC. Thus M satisfies the DCC by Corol-
lary 3. 11.

Definition 3. 13. The annihilator of an R-semimodule M, denoted A(M), is
defined by A(M)={r€ R|mr=0, for each me M}.
It is easily seen that A(M) is an ideal in R.

Lemma 3. 14. Let M be an R-semimodule and 1= A(M). Define operator multi-
plication of M by R/I to be m[r]=mr. Then M is an R/I-semimodule.

ProoF. Let ry, r, €[r]. There exist i, , i, € I such that r, +i; = r,+1i,, and hence
mry = m(ry+iy) = m(ry+i,) = mry, for me M. Thus the operator multiplication
i1s well-defined. It is straightforward to verify the operator conditions.

C. Hopkins [8] proved that in a ring with identity, the DCC implies the ACC,
which is part of the necessity of Akizuki’s Theorem. An analogue of the sufficiency
of Akizuki’s Theorem concludes this paper, and the following example shows that
under the same conditions Hopkins’ result need not be valid.

Example 3. 15. Let R be the set of non-negative integers | {=}, and define
a+b = max {a, b}, ab=min {a, b}. Then R is a commutative semiring with an
identity. A proper ideal I of R is of the form I/={a€R|a<r}, where r< R. Every
ideal is k in R and any two ideals are related. Moreover, R satisfies the DCC, but
not the ACC.

Theorem 3. 16. (AKIZUKL.) Let R be a commutative semiring with identity, with
the property that any two ideals of R are related and each is k in R. If R satisfies the
ACC and every prime ideal of R not equal to R is maximal, then R satisfies the DCC,

PROOF. Since R satisfies the ACC, by Lemma 3. 7 every ideal contains a product
of prime ideals. Hence {0} is a product of prime, and hence maximal, ideals 7, I, ...
vees I, Then {0} =1,1,...1,. Consider the sequence R21, 21, L2, L, 1;=2...2
I, 1,...1,={0}. The R-semimodule 7, ...J;_,/I, ... I;_,I;is annihilated by /;, and so by
Lemma 3. 14 it may be considered to be an R/I-semimodule. R/J; is a semifield by
Lemma 3. 5. Since R satisfies the ACC, sodoes /,...I;_,/I...I;_,I;. Observe that
the R-subsemimodules and the R/I-subsemimodules of 7,...[;_,/1,...I;,_I; are the
same. They are also R-subsemimodules of R/I,...J;_,1I,, and so any two are related
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and éach iskinl...L_I..Ii_yI;. Thus I, ...I;_,/I, ...I;_  I; satisfies the DCC by
Lemma 3. 12. Thus by Theorem 2. 18, 7, ... I;_,/I, ...I;_, I; has a composition series.
It must be of the form

Il "'Ii'-l JI Jz I]. e II‘-lIi
D e— :__....._—.._—...—_...D---D—-— ==
Il ...11_1}} Il'“ Il'—lli Il "'II—III‘ Il“‘Ii—lIf
where I;...I;_yDJ,DJ,2--2I,...I;_, I;, and each ideal is maximal in the prece-

ding ideal. Hence R has a composition series. Therefore, by Theorem 2. 18, R
satisfies the DCC.

0,
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