Near-rings without nilpotent elements

By HENRY E. HEATHERLY (Lafayette, Louisiana)

The primary purpose of this paper is to classify near-rings which have no non-
zero nilpotent elements and which satisfy the minimum condition on R-subgroups.
Rings with these two properties are just direct sums of division rings. The near-
ring situation is more complex. Even the structure of finite near integral domains is
not completely known.

It is shown in this paper that a near-ring R with D.C.C. on R-subgroups and
which contains no (non-zero) nilpotents is a direct sum of a finite number of R,
such that each R; has no divisors of zero, no proper R;-subgroups, has at least one
idempotent, and every idempotent is a left identity. Furthermore R is von Neumann
regular and if R has a non-zero right distributive element, then each R; is a near-field
and the additive group of R is abelian. If R is finite, then there exist integer n=>1
such that x"=x for all x € R; n being independent of x. Consequently a Boolean near-
ring with D.C.C. on R-subgroups is the direct sum of near-rings each with the prop-
erty xy=y for each y if x#0.

To illustrate the un-ringlike behavior of near-rings without nilpotents, examples
are given of a finite near-ring without zero divisors which is not a near-field and
satisfies x* =x for each x and of a near-ring without nilpotents which has an identity
but which is not regular (and hence not the direct product or sum of near-fields):
the latter example, of course, does not satisfy the minimum condition on R-sub-
groups.

1. Preliminary remarks

In this paper near-ring will mean left near-ring with a two-sided zero, i.e.,
0Or=r0=0. A normal subgroup (subgroup) S is a left ideal (N-subgroup) of a near-
ring Nif NSE S. (Here AB={ab:ac A, be B} for any subsets A and B of N.) A right
ideal is a normal subgroup S such that (n; +s)n, —n,n, €S for each s€ S, n,,n,€N.
An ideal is a subset which is both a left and a right ideal. Ideals are exactly the kernels
of near-ring homomorphisms. A simple near-ring is one in which the only ideals
are (0) and N. In any near-ring N the right annihilating set of an element x, Ann (x)=
={n€N:xn=0}, is a right ideal. If x is an idempotent, then Ann (x)+xN = N and
Ann (x) N xN = (0).

We will use the expressions “N has no nilpotent elements’” and “N has no
divisors of zero™ to mean N has no non-zero objects of these types. An N-subgroup
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G is said to be nilpotent if there exists a positive integer n such that every product of n
elements from G is zero, i.e., G"=(0).

A near-ring N is said to be (von®Neumann) regular if for each x€ N, there
exists x” € N such that xx"x=x. (The structure of regular near-rings is investigated in
[5].) A near-ring is Boolean if every element is idempotent. Note that in a regular
near-ring xx” and x’x are non-zero idempotents if x=0.

An element d in a near-ring N is a distributive element if (a+b)d = ad+bd
for each a, b€ N. If N contains a multiplicative semigroup S which generates N ad-
ditively and such that every element of S is distributive, then N is called a distributively
generated (d.g.) near-ring. For details on d.g. near-rings the reader is referred to
the primal paper by FROHLICH [4].

In the sequel we will make use of the fact that the additive group of a near-field
is commutative [9].

2. General structure theory

Let R be a near-ring without nilpotent elements. Then if ab=0 it follows that
ba=0 and hence arb =0 for each r € R. Thus for each non-zero x € R, the annihilator,
Ann (x), is an ideal of R. Since x?=0 we have Ann (x)=R.

If R is simple, then Ann (x)=(0) and hence R has no divisors of zero. It im-
mediately follows that every non-zero idempotent of R is a left identity.

Consider R now to be simple, have no nilpotents, and satisfy D.C.C. on R-sub-
groups. In this case for any non-zero x we have xR=2x*R = ... is a descending chain
of R-subgroups: hence there exists n such that x"R=x""!R and since R has no
divisors of zero it follows that R=xR. Thus (R— {0}, +) is a right simple semigroup
(CLirrorRD and PRESTON [3, p. 6]) and R has only (0) and R as R-subgroups.
BLACKETT [1] has shown that a near-ring N with D.C.C. on N-subgroups and with
no non-zero nilpotent N-subgroups is the (group) direct sum of minimal right
ideals of the form ¢; N, where ¢; is an idempotent. Applying this to R we have
there exists a non-zero idempotent e € R; recall that e must be a left identity.

Since xR=R we have for each x=0 there exists y€R such that xy=e, i.e.
(R— {0}, ) is a right group. So xyx=ex=x and we see that R is regular. Since R has
no divisors of zero we have that y is unique if x” is right distributive.

If R has a non-zero right distributive element ¢, then for each r &R, rd=rdd’'d
and hence (r—rdd’)d = 0 or r=rdd’. Thus the idempotent dd’ is a right identity and
hence is the identity; so (R— {0}, - ) is a group and R must be a near-field. It follows
that (R, +) is commutative.

If Ris d.g., then R is a d.g. near-ring with commutative addition and hence
must be a ring [4]; thus in this case R will be a division ring.

We summarize the above results in the following

Theorem 2. 1. If R is a simple near-ring without nilpotent elements and R satisfies
the D.C.C. on R-subgroups, then

(1) R has no divisors of zero;

(2) xR=R jor each non-zero x;

(3) every nomn-zero idempotent of R is a left identity; R has at least one such
idempotent;
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(4) (R—{0}, -) is a right group;

(5) R has no proper R-subgroups;

(6) R is regular;

(7) if R has a non-zero right distributive element, then R is a near-field and hence
(R, +) is commurative;

(8) if R is d.g., then R is a division ring.

Besides division rings and near-fields there are other near-rings satisfying the
hypotheses of Theorem 2. 1. The following is one such, for others see Clay’s tables [2].
Example 2. 2. Clay (0,1,2,4,4,2,1) on C,

O 3.2 .3 %30
0O 000O0OO0OO0DO
S e S S O -
21024 6.0 35
310w 1D 200 3
0 O S N R T
-3 5 Ve 0N B T S B
610" 23498

Note that x*=x for each x and that this is not a near-field, although the addition is
commutative.

We next consider the case where R is not necessarily simple. It is clear that
if R has no nilpotent elements, then R has no non-zero nilpotent R-subgroups.
We then can apply Blackett’s decomposition theorem which is stated next for easy
reference.

Lemma 2. 3. (BLACKETT [1].) If N is a near-ring with D.C.C. on N-subgroups
and no non-zero nilpotent N-subgroups, then N is the direct sum of a finite number
of ideals, where each summand N, is a simple near-ring with D.C.C. on N;-subgroups.

Thus if R has no nilpotent elements and has D.C.C. on R-subgroups, then R
is the direct sum of near-rings as described in Theorem 2. 1. Since the direct sum
of regular near-rings is is regular we see that R is regular.

The following lemma is useful; the proof is straightforward and will be omitted.

Lemma 2.4. If N is a near-ring with a non-zero right distributive element and
N = N2 N,, as a direct sum of ideals, then N, and N, each contains a non-zero
right distributive element. If N is d.g., then N, and N, are d.g. near-rings.

From this lemma and Theorem 2. | we immediately obtain

Theorem 2.5. Let R be a near-ring without nilpotents and R have D.C.C. on
R-subgroups.

(1) If R has a non-zero right distributive eleinent, then R is the direct sum of near-

fields and (R, +) is commutative.

(2) If R is d.g., then R is the direct sum of division rings.

(3) R is regular and has a left identity.

In the special case where R is Boolean the structure of the summands can
be made more precise. (The following result was originally obtained by R. COUR-
VILLE.)
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Theorem 2. 6. If R is a Boolean near-ring with D.C.C. on R-subgroups, then
R = R, & ... ® Ry, as a direct sum of ideals, where each R; is a trivial near-ring, i.e.,
ab="b for each b and each non-zero a.

Proor. We need only consider the simple summands R;. Since each non-zero
idempotent in R; is a left identity we see that the multiplication must be trivial.

It is of interest that if one considers Boolean near-rings without a two-sided zero
this result does not hold.

A consequence of Theorem 2. 6 is that a d.g. Boolean near-ring with D.C.C. is
the direct sum of two element fields and hence is a Boolean ring.

We next turn to the case where R is finite and has no nilpotents. As before we
consider R simple first. In this case R has no zero divisors so for each non-zero
r€ R there exists an integer n>1 (perhaps depending on r) such that /”"=/. Hence
r"=1 is a left identity. Because of the trivial multiplication we cannot say anything in
general about the additive structure of R. However, if R is non-trivial, then LiGu [7]
has shown that (R, +) must be nilpotent.

Theorem 2. 7. If R is a finite near-ring with no nilpotent elements, then for each
non-zero X €R there exists an n=1, independent of x, such that x"=x.

Proor. We first consider R to be simple. Then x"=x for each x, where n may
depend on x. If y € R such that y" =y, then x*=xand y* =y, where k = nm—n—m+2.
To see this recall that x"~' and ™~ ' are idempotents and note that
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similarly for y*. Since R is finite we can repeatedly apply this to obtain a & which
will serve for all r€R. We call k the power constant for R.

Next consider R without the simplicity restriction. Then R = R, = ... ©R;,
where the R; are simple. We show R, & R, has the desired property and then repeat
the process to obtain it for all of R. Let r = r;+r,, where r;€R;. Let n and m be
the power constants for R, and R, respectively. Since R, ® R, is the direct sum of
ideals we have that (r, 4 r,)x = r;x+r,x for each x€R, & R, (see HEATHERLY [6,
Lemma 4. 1]). Since R, and R, are ideals this yields (r, +r;)" = r{ +r5 for each
positive integer i. Let i = mm—n—m+2: then (r,+r;)" = ri+rs = r,+r,. as above.

We conclude this section with a result that does not involve a chain condition.
If N is a distributive near-ring, then the commutator subgroup N’ of (N, +) is
nilpotent; in fact N"- N” = 0 [8]. So a distributive near-ring either has nilpotents or
must be a ring.

The question arises as to whether a d.g. near-ring without nilpotent elements
must be a ring.

3. An example without D.C.C.

The structure theory developed in Section 2 depended strongly on having the
D.C.C. on R-subgroups. The general situation, without a finiteness condition, appears
to be open. The following is a class of examples of near-rings without zero divisors
which do not satisfy the D.C.C. on R-subgroups.



