Near-rings without nilpotent elements

By HENRY E. HEATHERLY (Lafayette, Louisiana)

The primary purpose of this paper is to classify near-rings which have no non-zero nilpotent elements and which satisfy the minimum condition on R-subgroups. Rings with these two properties are just direct sums of division rings. The near-ring situation is more complex. Even the structure of finite near integral domains is not completely known.

It is shown in this paper that a near-ring R with D.C.C. on R-subgroups and which contains no (non-zero) nilpotents is a direct sum of a finite number of R_i such that each R_i has no divisors of zero, no proper R_i -subgroups, has at least one idempotent, and every idempotent is a left identity. Furthermore R is von Neumann regular and if R has a non-zero right distributive element, then each R_i is a near-field and the additive group of R is abelian. If R is finite, then there exist integer n>1 such that $x^n=x$ for all $x \in R$; n being independent of x. Consequently a Boolean nearing with D.C.C. on R-subgroups is the direct sum of near-rings each with the property xy=y for each y if $x\neq 0$.

To illustrate the un-ringlike behavior of near-rings without nilpotents, examples are given of a finite near-ring without zero divisors which is not a near-field and satisfies $x^4 = x$ for each x and of a near-ring without nilpotents which has an identity but which is not regular (and hence not the direct product or sum of near-fields); the latter example, of course, does not satisfy the minimum condition on R-subgroups.

1. Preliminary remarks

In this paper *near-ring* will mean left near-ring with a two-sided zero, i.e., 0r=r0=0. A normal subgroup (subgroup) S is a left ideal (N-subgroup) of a near-ring N if $NS \subseteq S$. (Here $AB = \{ab: a \in A, b \in B\}$ for any subsets A and B of N.) A *right ideal* is a normal subgroup S such that $(n_1+s)n_2-n_1n_2 \in S$ for each $s \in S$, n_1 , $n_2 \in N$. An *ideal* is a subset which is both a left and a right ideal. Ideals are exactly the kernels of near-ring homomorphisms. A simple near-ring is one in which the only ideals are (0) and N. In any near-ring N the right annihilating set of an element x, Ann $(x) = \{n \in N: xn=0\}$, is a right ideal. If x is an idempotent, then Ann(x)+xN=N and $Ann(x) \cap xN = (0)$.

We will use the expressions "N has no nilpotent elements" and "N has no divisors of zero" to mean N has no non-zero objects of these types. An N-subgroup

G is said to be nilpotent if there exists a positive integer n such that every product of n elements from G is zero, i.e., $G^n = (0)$.

A near-ring N is said to be (von Neumann) regular if for each $x \in N$, there exists $x' \in N$ such that xx'x = x. (The structure of regular near-rings is investigated in [5].) A near-ring is Boolean if every element is idempotent. Note that in a regular near-ring xx' and x'x are non-zero idempotents if $x \neq 0$.

An element d in a near-ring N is a distributive element if (a+b)d = ad+bd for each $a, b \in N$. If N contains a multiplicative semigroup S which generates N additively and such that every element of S is distributive, then N is called a distributively generated (d.g.) near-ring. For details on d.g. near-rings the reader is referred to the primal paper by FRÖHLICH [4].

In the sequel we will make use of the fact that the additive group of a near-field is commutative [9].

2. General structure theory

Let R be a near-ring without nilpotent elements. Then if ab=0 it follows that ba=0 and hence arb=0 for each $r \in R$. Thus for each non-zero $x \in R$, the annihilator, Ann (x), is an ideal of R. Since $x^2 \neq 0$ we have Ann $(x) \neq R$.

If R is simple, then Ann(x)=(0) and hence R has no divisors of zero. It immediately follows that every non-zero idempotent of R is a left identity.

Consider R now to be simple, have no nilpotents, and satisfy D.C.C. on R-subgroups. In this case for any non-zero x we have $xR \supseteq x^2R \supseteq ...$ is a descending chain of R-subgroups; hence there exists n such that $x^nR = x^{n+1}R$ and since R has no divisors of zero it follows that R = xR. Thus $(R - \{0\}, \cdot)$ is a right simple semigroup (CLIFFORD and PRESTON [3, p. 6]) and R has only (0) and R as R-subgroups. BLACKETT [1] has shown that a near-ring N with D.C.C. on N-subgroups and with no non-zero nilpotent N-subgroups is the (group) direct sum of minimal right ideals of the form e_iN , where e_i is an idempotent. Applying this to R we have there exists a non-zero idempotent $e \in R$; recall that e must be a left identity.

Since xR = R we have for each $x \neq 0$ there exists $y \in R$ such that xy = e, i.e. $(R - \{0\}, \cdot)$ is a right group. So xyx = ex = x and we see that R is regular. Since R has no divisors of zero we have that y is unique if x' is right distributive.

If R has a non-zero right distributive element d, then for each $r \in R$, rd = rdd'd and hence (r - rdd')d = 0 or r = rdd'. Thus the idempotent dd' is a right identity and hence is the identity; so $(R - \{0\}, \cdot)$ is a group and R must be a near-field. It follows that (R, +) is commutative.

If R is d.g., then R is a d.g. near-ring with commutative addition and hence must be a ring [4]; thus in this case R will be a division ring.

We summarize the above results in the following

Theorem 2.1. If R is a simple near-ring without nilpotent elements and R satisfies the D.C.C. on R-subgroups, then

- (1) R has no divisors of zero;
- (2) xR = R for each non-zero x;
- (3) every non-zero idempotent of R is a left identity; R has at least one such idempotent;

- (4) $(R-\{0\}, \cdot)$ is a right group;
- (5) R has no proper R-subgroups;
- (6) R is regular;
- (7) if R has a non-zero right distributive element, then R is a near-field and hence (R, +) is commutative;
- (8) if R is d.g., then R is a division ring.

Besides division rings and near-fields there are other near-rings satisfying the hypotheses of Theorem 2. 1. The following is one such, for others see Clay's tables [2]. Example 2. 2. Clay (0, 1, 2, 4, 4, 2, 1) on C_7

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	4	1	5	2	6	3
4	0	4	1	5	2	6	3
5	0	2	4	6	1	3	5
6	0	1	2	3	4	5	6

Note that $x^4 = x$ for each x and that this is not a near-field, although the addition is commutative.

We next consider the case where R is not necessarily simple. It is clear that if R has no nilpotent elements, then R has no non-zero nilpotent R-subgroups. We then can apply Blackett's decomposition theorem which is stated next for easy reference.

Lemma 2.3. (Blackett [1].) If N is a near-ring with D.C.C. on N-subgroups and no non-zero nilpotent N-subgroups, then N is the direct sum of a finite number of ideals, where each summand N_i is a simple near-ring with D.C.C. on N_i -subgroups.

Thus if R has no nilpotent elements and has D.C.C. on R-subgroups, then R is the direct sum of near-rings as described in Theorem 2. 1. Since the direct sum of regular near-rings is is regular we see that R is regular.

The following lemma is useful; the proof is straightforward and will be omitted.

Lemma 2.4. If N is a near-ring with a non-zero right distributive element and $N = N_1 \oplus N_2$, as a direct sum of ideals, then N_1 and N_2 each contains a non-zero right distributive element. If N is d.g., then N_1 and N_2 are d.g. near-rings.

From this lemma and Theorem 2.1 we immediately obtain

Theorem 2.5. Let R be a near-ring without nilpotents and R have D.C.C. on R-subgroups.

- (1) If R has a non-zero right distributive element, then R is the direct sum of near-fields and (R, +) is commutative.
- (2) If R is d.g., then R is the direct sum of division rings.
- (3) R is regular and has a left identity.

In the special case where R is Boolean the structure of the summands can be made more precise. (The following result was originally obtained by R. Courville.)

Theorem 2.6. If R is a Boolean near-ring with D.C.C. on R-subgroups, then $R = R_1 \oplus ... \oplus R_k$, as a direct sum of ideals, where each R_i is a trivial near-ring, i.e., ab = b for each b and each non-zero a.

PROOF. We need only consider the simple summands R_i . Since each non-zero idempotent in R_i is a left identity we see that the multiplication must be trivial.

It is of interest that if one considers Boolean near-rings without a two-sided zero this result does not hold.

A consequence of Theorem 2. 6 is that a d.g. Boolean near-ring with D.C.C. is the direct sum of two element fields and hence is a Boolean ring.

We next turn to the case where R is finite and has no nilpotents. As before we consider R simple first. In this case R has no zero divisors so for each non-zero $r \in R$ there exists an integer n > 1 (perhaps depending on r) such that $r^n = r$. Hence r^{n-1} is a left identity. Because of the trivial multiplication we cannot say anything in general about the additive structure of R. However, if R is non-trivial, then LIGH [7] has shown that (R, +) must be nilpotent.

Theorem 2.7. If R is a finite near-ring with no nilpotent elements, then for each non-zero $x \in R$ there exists an n > 1, independent of x, such that $x^n = x$.

PROOF. We first consider R to be simple. Then $x^n = x$ for each x, where n may depend on x. If $y \in R$ such that $y^m = y$, then $x^k = x$ and $y^k = y$, where k = nm - n - m + 2. To see this recall that x^{n-1} and y^{m-1} are idempotents and note that

$$x^{k} = x^{(n-1)(m-1)+1} = (x^{n-1})^{m-1}x = x^{n-1}x = x;$$

similarly for y^k . Since R is finite we can repeatedly apply this to obtain a k which will serve for all $r \in R$. We call k the power constant for R.

Next consider R without the simplicity restriction. Then $R = R_1 \oplus ... \oplus R_j$, where the R_i are simple. We show $R_1 \oplus R_2$ has the desired property and then repeat the process to obtain it for all of R. Let $r = r_1 + r_2$, where $r_i \in R_i$. Let n and m be the power constants for R_1 and R_2 respectively. Since $R_1 \oplus R_2$ is the direct sum of ideals we have that $(r_1+r_2)x = r_1x+r_2x$ for each $x \in R_1 \oplus R_2$ (see HEATHERLY [6, Lemma 4. 1]). Since R_1 and R_2 are ideals this yields $(r_1+r_2)^i = r_1^i + r_2^i$ for each positive integer i. Let i = nm-n-m+2: then $(r_1+r_2)^i = r_1^i + r_2^i = r_1 + r_2$. as above.

We conclude this section with a result that does not involve a chain condition. If N is a distributive near-ring, then the commutator subgroup N' of (N, +) is nilpotent; in fact $N' \cdot N' = 0$ [8]. So a distributive near-ring either has nilpotents or must be a ring.

The question arises as to whether a d.g. near-ring without nilpotent elements must be a ring.

3. An example without D.C.C.

The structure theory developed in Section 2 depended strongly on having the D.C.C. on *R*-subgroups. The general situation, without a finiteness condition, appears to be open. The following is a class of examples of near-rings without zero divisors which do not satisfy the D.C.C. on *R*-subgroups.