The upper radical construction

By PAUL O. ENERSEN and W. G. LEAVITT (Lincoln, Nebraska)

Let W be a universal class of not necessarily associative rings. For a nonempty
subclass M of W we consider the class function #M={R c¢W/every 0=R/I{ M}.
The class M is said to be s-complete if it satisfies the property: If R£M, then for
every 0=I4R there exists some 0=I/JEM (we use the notation IAR to mean 1
is an ideal of R). It is well known (see e.g. [2, pp. 6—7]) that if M is s-complete,
#M is a radical class called the wpper radical class determined by M. However, the
converse fails as shown in Example 1. In Theorem | we give necessary and sufficient
conditions on a class M in order that %M be a radical class, a hereditary radical class,
or a hypernilpotent radical class. In the remainder of this note we consider subclasses
which determine the same upper radical class.

Recall that a nonempty subclass P of W is a radical class in W if it has the prop-
erties (i) P is homomorphically closed, and (i) if R €W with R4 P, then there exists
I4R such that 0=R/I € #P={R ¢ WI|if 0=I4R then /¢ P}. P is said to be hereditary
if whenever R €P then 1P for all IAR. A hereditary radical class is called a hyper-
nilpotent radical class if it contains all nilpotent rings.

Consider the following properties for a nonempty subclass M of W:

(A) If 0=R <M, there exists some 0= R/l € ¥¥M.

(B) If 0=14R €W is such that some 0=1/J <M, there exists HAR such that
0=R/HcFUM.

(C) If 0#R<W is such that R?=0, then R4 M.

Theorem 1. The class #M is a radical class in W if and only if M has property
(A). M is a hereditary radical class if and only if M has properties (A) and (B),
and is a hypernilpotent radical class if and only if M has properties (A), (B), and (C).

Proor. First note that for any class M, #M is always homomorphically closed.
Suppose M satisfies property (A) and let 0=R €W with R { %M. Then there is some
0=R/I £M, so by (A) there exists 0= (R/I)/(K/I) = R/K € %M. Thus %M is radical.

Conversely, suppose #M is radical. If 0=R <M, then since M1 #M = {0},
R & %M. Thus by (ii) there exisis some 0=R/I €S %M.

To see the equivalence of hereditariness and property (B) in the case #M is
a radical class, first suppose M has property (B). Let 0 =R %M and consider any
0=14AR. If 14%M, there exists 0=1/J£M, so by (B) there exists 0=R/H %M,
contradicting (i). Thus #M is hereditary.

On the other hand suppose #M is hereditary. Let 0=RcW and let 0=14R
be such that some O =1/J M. Then I £ #M, so by the hereditariness of M., R ¢ %M.
Thus by (ii), 0= R/H < %M for some HAR.
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Clearly if %M is a hypernilpotent radical class then M satisfies property (C).
To see the converse, let 0=R<W be nilpotent and suppose R #M. Then there
exists I4AR such that 0 =R/l ¢ %M. Since R is nilpotent, R/I is also with index
of nilpotency m=1. Let K/I=(R/I)"~'. Then 0=K/I4R/I and (K/I)>=0. Further-
more, any image of K/I must also have zero multiplication. Thus by (C), no non-
zero image of K/I lies in M, contradicting R/I € %M. Therefore R %M, and so
#M is hypernilpotent.

Example 1: Let N denote the class of all nil rings. Then N is a radical class
in the universal class W of all not necessarily associative rings (see e.g. [2, pp. 18—19])
with semisimple class #N={R ¢W|R has no nil ideals}. Let K be any non-nil ring
which has a nonzero nil ideal J (e.g., take K=F[x]/(x)?, F any field). Let M = N
U {K}. Then M is not s-complete, for every image of J must also be a nil ring and
hence not in M.

Let 0 =R €M, so that either RN or R=K.

Case I: If RN, R has no nil ideals. Thus if H is any nonzero ideal of R,
N(H) = H, where N(H) is the nil radical of H. Hence 0= H/N(H) ¢ %N S M. There-
fore every nonzero ideal of R has a nonzero image in M; i.e., R€¥ %M.

Case 2: If R=K, then N(R) is a proper ideal of R. Thus 0=R/N(R) %N, and
by Case | we see that R/N(R) € %M.

Therefore by Theorem 1, #M is a radical class.

We give one further application of Theorem 1.

Example 2: A ring K is called completely indempotent if (a*)=(a) for all a<K.
In a recent paper [1] ANDRUNAKIEVITCH and RJABUHIN proved the following:

Theorem. The following conditions are equivalent for an associative ring K:

(1) K is completely idempotent,

(2) K/I has no nilpotent elements for all ideals 1 of K,

(3) If K/l is subdirectly irreducible it has no zero divisors, and

(4) Every K/l is a subdirect sum of subdirectly irreducibic rings with no zero
divisors.

Either of the conditions (2) or (3) can be used to provide another proof that
the class of all completely idempotent rings is a radical class in the universal class W of
all associative rings:

First let M={R<W|R contains a nonzero nilpotent element} and let K¢M.
Pick 0=a €K to be a nilpotent. Let I4K be maximal with respect to exclusion of a.
Then K/I is subdirectly irreducible with nonzero heart, namely the principal ideal
generated by the image of a in K/I. Since every ideal of K/I contains a nonzero nil-
potent, every ideal is in M and thus not in #M. Hence K/I € %M. Therefore from
Theorem | it follows that #M, the class of all completely idempotent rings by (2),
is a radical class.

To apply (3), let M’={R<W|R is a subdirectly irreducible ring containing a
zero divisor} and let KcM’. If K is completely idempotent, then [I, Theorem I,
p. 1015] be=0 for b, c€K implies that (b)(1(¢c) = (0), contradicting the subdirect
irreducibility of K. Hence for some a €K, (a?) #(a). So if I4K is chosen to be maximal



The upper radical construction 221

with respect to (¢?)S 1 and a41. then K/I is subdirectly irreducible with heart (a),
where a is the image of a in K/I. For any 0=J4K/I, a €J so J has an ideal H maximal
with respect to a4 H. Then J/H contains a nonzero nilpotent element and thus
is in M’. Hence J4#M’, and so K/l ¢ ##M’. So again, %M’, the class of all com-
pletely idempotent rings by (3), is seen to be a radical class.

We now consider certain subclasses M and N of the arbitrary universal class
W for which M =4%N. It should be noted that the results hold whether or not
%M and %N are radical classes.

Theorem 2. Letr M and N be nonempty subclasses of W such that one of M and N
is homomorphically closed. Then # M =N if and only if M and N satisfy property (a):
Every nonzero ring in M'JN has a nonzero image in M N,

Proor. Without loss of generality assume that M is the homomorphically
closed class.

Suppose that M=%N and let 0==R<MUN. If REM, then R¢#M=#N
so there exists 0=R/I¢N. Thus R/I<M /N, If R¢N, then R4 %M so there exists
0=R/I<M. Now R/I¢#N, so there exists KAR, 1S K, such that 0=(R/I)/(K/I) ==
=R/KéN. Since R/K is a homomorphic image of R/I, RRK¢M/N.

Conversely suppose R¢ %M. Then there exists 0=R/I£M. By property (a),
we can find K4R, 1K, such that (R/D/(K/I) = RIKEM[(IN £ N. Hence R<#N
and so #NS #M. Similarly #M S %N, and we have the desired equality.

Corollary 1: Property (a) is asufficient condition that M =N for arbitrary
classes M and N.

Theorem 3. If M and N are subclasses of W, one of which consists entirely
of Noetherian rings, then 4M=UN if and only if M and N satisfy properiy (a).

PrOOF. Without loss of generality assume that M is the Noetherian class.

Suppose #M=%N and let 0 = REMUN. If REM, then R4#N so there
exists I, AR such that 0=R/I, €N. Then R/I, § #M so there exists I, 4R, 1, <1,,
such that 0= (R/I,)/(I,/1,)=R/I, ¢ M. Continuing the process we obtain an ascend-
ing chain of ideals of R, (0)=1,&£1,£1,%..., so since R is Noetherian I,=1,. ,
for some n=0. Then R/I, = R/I,., €M/IIN.

If REN, as above we get 0=R/J, € M. Then in the same manner we arrive at an
ascending chain of ideals of R/J,,J,/J,EJ,/J,EJ3/J, < ... which must stop at
some n=1. Then R/, = (R/J,)/J,/J,) = R/I)/(Is1/d;) = R, s EMNN.
Therefore property (a) is established and Corollary 1 yields the converse.

Example 3: Let {x;} i=1,2,... be a countably infinite set of indeterminates
over Z, the ring of integers, and let K=Z[x,, x,,...]. For each n=1, 2, ... let
I,=(x,, 2x,, ..., nx,) and define K,=K/I,. Let W be any universal class containing
K and define subclasses M and N of W by M={0.K,.K,.....K,,. ...} and
N={0,K,,K;, ....,K,,_,, ...}. Note that for each n, K, is not Noetherian, and that
if n=m, then K, is a homomorphic image of K,,.

Now let R€#M and suppose that R4 #N. Then there exists I4R such that
0=R/I€N; say R/I=K,,_,. But then K,, is a homomorphic image of R/I, and
thus of R, which is in M, a contradiction. Hence #M S #%N. The reverse inclusion
follows similarly, so #M=#N.
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However, M(IN = {0}, so property (a) does not hold for M and N. Thus we
see that the hypotheses that one class be homomorphically closed, and that one
class be Noetherian, cannot be dropped from Theorems 2 and 3, respectively.

As one application of Corollary 1, we have:

Theorem 4. Let M be a nonempty subclass of W. Then U (W —UM) = UM.

Proor. Forany NS W, #N = %(N {0}). Thus it suffices to show that #M’=
=#M, where M’ = (W—2M) U {0}.

Let 0=ReM’. Then R4#M, so there exists 0=R/IM. Since MEM’, the
result follows from Corollary 1.

Noting that M S N implies # N S #M, we have:

Corollary 2: If M is a subclass of W, then #M = %N for any subclass N such
that M S N S (W-2M) U {0}.
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