Rearrangement inequalities

By Z. DAROCZY (Debrecen)

1. Introduction

Let x=(x;,X;3,...,X,) be an n-tuple of real numbers, where x;€(a,b),
i=1,2,...,nand —eo=ag<b=--. Let us denote by x*=(xf,x§, ers X¥) the same
n-tuple rearranged in anonincreasing order xi=x3=...=x} and x"=(x;, xz, wrpdal
the same n-tuple rearranged in a nondecrcasmg order X1=EX3= ... =X,

Let F(x)=F(xy, X35 ...s %) (x:€(a, b), i=1,2,...,n) be a real valued func-
tion. We say that the function F has the property 3“ if for any x=(x;, X3, ..., X,)
(xi€(a, b), i=1,2, ..., n) the inequality

(1. 1) F(x")=F(x)=F(x*)
holds.

For a function F with property # an example is the following one. Suppose
that (a, b)=(0, ==) and 0=a,=a,=...=a, is a given sequence. Then the function

a;
Xi

M=

(1.2) F(x) =

i

has property # (see [1], Theorem 368).
Recently, LONDON [3] proved — as a generalization of (1. 2) — that the functions
of the form

(1.3) F(x) =

M:.

j[——] O=a,=a,=...=a,)

i=1

have the property 2 if f(r) is a convex function for =0 and satisfies f(0)=f(¢) for
any t=0. In the same paper one can find — as a result independent from the for-
mer one — a sufficient condition for the Z property of the functions of the type

(1.4) F(x) = Zn'fll-l-%] 0=a,=a,=...=a,).
i=1 i

This result is a generalization of a theorem given by MiNc [4].

In the present note as a common generalization of the earlier results we give
a necessary and sufficient condition for the 2 property of the functions having
the form

(1.5) F(x) =

I|[4a

g:(x)),
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where g;(t), i=1,2, ..., n, t€(a, b) are given real valued functions. Further, we also
give a sufficient condition for the inequality

M=

Zu Gi+k(Xi ) = i

k= im] k

N;

(1.6)

; ik (X7 V%)

|

which follows from our main theorem and can be considered as a generalization of a
result of WIENER [5] (see also [1], Theorem 386).
2. The main theorem

Let g;(¢t), i=1, 2, ..., n be real valued functions defined in the interval (a, b).

Theorem 1. The function

@.1) F(x) = =Z. g(x)  (ve(@b).i=1,2,...n)

has the property 2 if and only if the functions
(2' 2) gk(t)"gk'i‘l(t) k — lo 2! '-'!"_'I
are nondecreasing in the interval (a, b).

ProoF. (i) The condition is necessary. From the property 2 it follows
(2.3) ;21 gi(xi) = 321' gi(xy)

for any x=(x1, X5, +:-5.%3) (x,- €(a,b), i=1,2,...,n). Let 1=k=n-1 and a<t,=
=1,=>b be arbitrary variables and let the n-tuple

»

1 2 k=1 g k+1 k+2 "

C— o — —

X = (Tls Es seey ler' 1 f2s °->9T2)
be substituted into (2. 3). Then we have
&(t) +8iv1(ty) = g (t)) +8is1 (1),

i.e. the function g,(7)—g,.(¢) is nondecreasing.

(ii) The condition is sufficient. First, it should be noted that the function g,—g;
is nondecreasing if 1=/<j=n, since it can be expressed as the sum of nondecreasing
functions:

i=1
81— &; =k_§ (8k — &k +1)-

This means that the inequality

(2. 4) g(t)+g;(s) = gi(s)+g;(t)
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is true for all | =/=j=n and a<t=s5<b. Let us now consider an arbitrary n-tuple

[ J

=

- R P ORGSR A | (1=l<j=n).

We introduce the transformation 4,; by

[ Jj

A“.’x=(x|,xZ......;j,...,;f,...,x") ({":J.)
which means an interchange of the /-th and j-th elements in x. If /<j and x,=x,,
then by (2.4) we obtain
gl(.xj)'l'gj(-\‘l) == gt(x!)+gj(xj)s
hence

@3 Fyx = 3 a+a@)+ge = 3 ax+atx+gm) = FE).
i=l, Jj i=l,J

The n-tuple x” can be obtained from x by applying a product of transformations of
the type A;; (/<j), while x,=x;, therefore by (2. 5) we have

F(x')=F(x).
The other inequality can similarly be proved because
F(X) = F(A;jX)

for /<jand x,=x;, and x" can be expressed as consecutive 4;; (/=j) transformations
performed on x, while x,=x;. Therefore

F(x)= F(x*).

Remark. The factorization used in the proof of the theorem can be verified by
induction. The statement is clearly true for n=2. Let us suppose that the statement is
also true for n=k=2 and let x=(x,, x,, ..., X3, Xz +;) be an arbitrary (k + 1)-tuple.
If xj=x, then the proof is completed, because for the k-tuple (x5, X3, ..., Xg, Xgy)
the statement is true which implies that it is true for x. If x{=x; (1<j), then by
definition of x” we have x, =x; and thus the (k+I)-tuples 4,;x and x” will have the
same first element. For the further & elements of the (kK + 1)-tuple 4, ; x the statement
will be true by assumption.

For example, if x=(1,5,7, 2, 3, 4, 6), then we have

X X' =AgrAseAssA3sA24X
and similarly
.'C* :A46A37A27A13.\‘.

3. Special cases

(a) First, we consider the functions having the form

G.1) F= 3% (xe@ =), i=1,2,...,n),

i=1 X}
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where @;=0, i=1, 2, ..., n are given numbers. By Theorem 1 the function (3. 1) has
the # property if and only if the functions

Ay gy G — gy N w1
r r I ] P w3

are nondecreasing, 1.e. @, =a;,,, k = 1,2, ..., n—1. This means that (3. |) has the
property # if and only if the sequence {;}] is nondecreasing. This is a generaliza-
tion of the theorem 368 in [1] because we also proved the necessarity of the condi-
tion. We remark that this result is valid for all real, not necessarily nonnegative a;,
=125 R

(b) As a generalization of the example (a) we consider the functions

(3.2) F(x) = ﬁ'f[‘:_‘] (€00, =), i=1,2,...,n),
i=1 \X

where a;=0, i=1, 2, ..., n are given numbers and f(r) is a real valued function in
the interval [0, ==). By Theorem 1 the function (3. 2) has the property Z if and only
if the functions

(3.3) 9vk(r)=.f[f"]—f[f"-‘f-‘] kw 1,2 ...,0~1

are nondecreasing in the interval (0, ). By reason of this result Theorem 2 of
LoNDON's paper [3] states the following.

Theorem 2. If /(1) is convex in the interval [0, =), f(0)=/(t) for t=0 and 0=a,=
=a,.,, then the function (3. 3) is nondecreasing.

The proof of this theorem will be performed in a way considerable different as
given in [3]. For this the following simple Lemma will be used.

Lemma. If f(1) is convex in the interval [0, =) and f(0)= f(t) for t1=0, then
(3.4) S(x)+f(xy) = f(y)+Ay2)
for arbitrary x;, y;€[0, =) with the property x, =y, and x,+x, = y,+,.

PrOOF. Let x3 = y,+y,—Xx,—x, and y;=0. From the well known theorem of
KARAMATA [2] (see also [1], Theorem 108) we have

Jx)+f(x2) +10x3) = f(y)+(y2) +S(y3)s

hence, because of

f(r3) = f0) = fly, +r,—x;,—x,) = flx3),
we obtain (3. 4).

PROOF of the Theorem 2. Let 0<=x<y be arbitrary numbers and we define

X = y A= s ] A= 3 FL=

x ¥ X 3 ¥
We have x,=y, and x,+x, = y;+y,, which implies (3.4) by the Lemma, i.e.

ety )

bl RS G [ AT
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Hence
P (X) =@y ().

This means that ¢, is nondecreasing.
(c) We now consider the functions

3.5 F(x) = 2”‘ Iog[l . ii-] (x;€(0, =), i=1,2,...,n)
i=1 Xi

where @;=0, i=1, 2, ..., n are given numbers. By Theorem 1 the function (3. 5) has
the property # if and only if the functions

ay a4 !+ a
log |1+ —log |1 = log —— k=1,2.....n—1
g[ I] g[ * 4 ] g3“"“&41

are nondecreasing, i.e. the sequence {a,}] is nondecreasing. This result is a generaliza-
tion of the theorem of MiINC [4]). We remark that this result is independent from
Theorem 2 because the function log (1+17) is concave.

(d) As a generalization of the example (c) we consider the functions having
the form

(3.6) Fx)= 3/ 1+%‘-] (x:€(0, =), i=1,2,...,n),
i=1 “*

where @;=0, i=1, 2, ..., nare given numbers and f(7) is a real valued function defined
in the interval [I, ==). By theorem 1 the function (3. 6) has the property # if and
only if the functions

(3.7) Ui (1) =_/'[l +“I“]—f[t+“";’] k=1,2on—1

are nondecreasing in the interval (0, ==). By reason of this result Theorem 1 of [3]
can be presented also in the following form.

Theorem 3. Let f(t) be a real valued function in the interval [0, =) for which

() fF()=£(t) if t=1; and
(i) h(t)=f(e") is convex in [0, =), are valid. Then the function (3.7) is non-
decreasing provided that 0=a,=a, ., ,.

Proor. We shall show that this result can easily be obtained from the Lemma,
too. By the conditions (i) and (i) the function A(z) is convex in [0, ==) and /#(0)=/(z)
for all r=0. Let 0<x-=) be arbitrary numbers and we define

log[l-!—g:-], Xy = log[l+a"+'],

v

Il

Xy

y, = Ing[l-i-a":]_. Yy, = log[l-l—?‘-].

We have x, =y, and x,+x, = y,+y,, which — by the Lemma — implies

hix)+h(xy) = h(y)+h(y,),
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o 3 i o e i e

From this inequality — because of f(1+1¢) = A[log (1+41)] — we obtain
Y (x) = Y(y),

i.e. the function i, is nondecreasing.

1.e.

4. On the Wiener's inequality

The inequality of WIENER [5] states that if ¢;=¢;=...=¢,,=0 and
X=(X1y X325 0005 Xe)y V=(P1sV2s o5 V) (%20, y,=0, r=l, ey )

are arbitrary n-tuples, then

] n n g
4.1) 2 CuXn= 2 2 CaXi Vi

k=1 i=1k=1

I4=

I
-

As a generalization of this theorem we shall prove the following one.
Theorem 4. Ler g,(1), I=2, 3, ..., 2n be real valued functions defined in the in-

terval (0, «). For arbitrary n-tuples x=(xy,X5,...,X,) and y=(y,, V2, .ccs V)
(X7, 7 €00, =), i=1,2, ..., n) the inequality
H

4.2) P Ig:l Gk (i) =

(.

._2 & +x (X7 ¥E)

-
]
-

K
holds if the functions

(4.3) &(t)— 81 (1) l=2,3,..,2n—1
are nondecreasing in the interval (0, =).

ProoF. By Theorem 1 we have

2 2 Ginlxn) = Z[f: S.+t(ank)] =
j=1 k=1 i=1 \k=1
= ‘_E [ 2 &ivk (X %) ] k._Zl [f; (x| = [._Z gsn(x?}":)]-

which proves the theorem.

As an example we consider the functions g,(7)=ct, where ¢;, I=2,3, ...,2n
are given numbers. By Theorem 4 the inequality (4. 1) holds if the sequence {c,}2 is
nonincreasing.

As a further example we define the functions

g() = ?log[l+€—’] 1=2,3, ..., 2n,
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where 0=c¢,=c¢3=... =c,, are given numbers. By Theorem 4 we have the inequality

Cisk log[ +k]§ 2 2"= Ci+kl [ +£i_}£]

1 X Vi Xi Vi i=1k=1X k

l4s
M:

k

i

for all x=(x;, X3, ..., X,) and y=(¥y, Y2, ..., Va) (Xis 1 €(0, =), i=1, 2, ..., n). This
inequality is the same as the following one:

r i
Gx,») =] H[ e +1] = G(x*, y*).
i=1k Xi Vi ‘
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