Rearrangement inequalities

By Z. DARÓCZY (Debrecen)

1. Introduction

Let $x=(x_1, x_2, ..., x_n)$ be an *n*-tuple of real numbers, where $x_i \in (a, b)$, i=1, 2, ..., n and $-\infty \le a < b \le \infty$. Let us denote by $x^* = (x_1^*, x_2^*, ..., x_n^*)$ the same *n*-tuple rearranged in a nonincreasing order $x_1^* \ge x_2^* \ge ... \ge x_n^*$ and $x' = (x_1', x_2', ..., x_n')$ the same *n*-tuple rearranged in a nondecreasing order $x_1' \le x_2' \le ... \le x_n'$.

Let $F(x) = F(x_1, x_2, ..., x_n)$ $(x_i \in (a, b), i = 1, 2, ..., n)$ be a real valued function. We say that the function F has the property \mathcal{P} if for any $x = (x_1, x_2, ..., x_n)$ $(x_i \in (a, b), i = 1, 2, ..., n)$ the inequality

$$(1.1) F(x') \leq F(x) \leq F(x^*)$$

holds.

For a function F with property \mathscr{P} an example is the following one. Suppose that $(a, b) = (0, \infty)$ and $0 \le a_1 \le a_2 \le ... \le a_n$ is a given sequence. Then the function

(1.2)
$$F(x) = \sum_{i=1}^{n} \frac{a_i}{x_i}$$

has property P (see [1], Theorem 368).

Recently, LONDON [3] proved — as a generalization of (1. 2) — that the functions of the form

(1.3)
$$F(x) = \sum_{i=1}^{n} f\left(\frac{a_i}{x_i}\right) \qquad (0 \le a_1 \le a_2 \le \dots \le a_n)$$

have the property \mathscr{P} if f(t) is a convex function for $t \ge 0$ and satisfies $f(0) \le f(t)$ for any $t \ge 0$. In the same paper one can find — as a result independent from the former one — a sufficient condition for the \mathscr{P} property of the functions of the type

(1.4)
$$F(x) = \sum_{i=1}^{n} f\left(1 + \frac{a_i}{x_i}\right) \qquad (0 \le a_1 \le a_2 \le \dots \le a_n).$$

This result is a generalization of a theorem given by MINC [4].

In the present note as a common generalization of the earlier results we give a necessary and sufficient condition for the \mathcal{P} property of the functions having the form

(1.5)
$$F(x) = \sum_{i=1}^{n} g_i(x_i),$$

Z. Daróczy

where $g_i(t)$, i=1, 2, ..., n, $t \in (a, b)$ are given real valued functions. Further, we also give a sufficient condition for the inequality

which follows from our main theorem and can be considered as a generalization of a result of WIENER [5] (see also [1], Theorem 386).

2. The main theorem

Let $g_i(t)$, i=1, 2, ..., n be real valued functions defined in the interval (a, b). Theorem 1. The function

(2.1)
$$F(x) = \sum_{i=1}^{n} g_i(x_i) \qquad (x_i \in (a,b), i = 1, 2, ..., n)$$

has the property P if and only if the functions

$$(2.2) g_k(t) - g_{k+1}(t) k = 1, 2, ..., n-1$$

are nondecreasing in the interval (a, b).

PROOF. (i) The condition is necessary. From the property P it follows

(2.3)
$$\sum_{i=1}^{n} g_i(x_i') \leq \sum_{i=1}^{n} g_i(x_i)$$

for any $x = (x_1, x_2, ..., x_n)$ $(x_i \in (a, b), i = 1, 2, ..., n)$. Let $1 \le k \le n-1$ and $a < t_1 \le t_2 < b$ be arbitrary variables and let the *n*-tuple

$$x = (\underbrace{t_1, t_1, \dots, t_1}_{2}, \underbrace{t_2, t_1, \underbrace{t_2, t_1}_{2}, \underbrace{t_2, \dots, t_2}_{2}}_{1})$$

be substituted into (2.3). Then we have

$$g_k(t_1) + g_{k+1}(t_2) \le g_k(t_2) + g_{k+1}(t_1),$$

i.e. the function $g_k(t) - g_{k+1}(t)$ is nondecreasing.

(ii) The condition is sufficient. First, it should be noted that the function $g_l - g_j$ is nondecreasing if $1 \le l < j \le n$, since it can be expressed as the sum of nondecreasing functions:

$$g_l - g_j = \sum_{k=1}^{j-1} (g_k - g_{k+1}).$$

This means that the inequality

(2.4)
$$g_l(t) + g_j(s) \le g_l(s) + g_j(t)$$

is true for all $1 \le l < j \le n$ and $a < t \le s < b$. Let us now consider an arbitrary n-tuple

$$x = (x_1, x_2, ..., \overset{i}{x_l}, ..., \overset{j}{x_j}, ..., x_n) \qquad (1 \le l < j \le n).$$

We introduce the transformation A_{li} by

$$A_{lj}x = (x_1, x_2, ..., \overset{l}{x_j}, ..., \overset{j}{x_l}, ..., x_n)$$
 $(l < j)$

which means an interchange of the *l*-th and *j*-th elements in x. If l < j and $x_l \ge x_j$, then by (2.4) we obtain

$$g_l(x_i) + g_i(x_l) \leq g_l(x_l) + g_i(x_i),$$

hence

$$(2.5) \quad F(A_{lj}x) = \sum_{\substack{i=1\\i\neq l,j}}^{n} g_i(x_i) + g_l(x_j) + g_j(x_l) \leq \sum_{\substack{i=1\\i\neq l,j}}^{n} g_i(x_i) + g_l(x_l) + g_j(x_j) = F(x).$$

The *n*-tuple x' can be obtained from x by applying a product of transformations of the type A_{lj} (l < j), while $x_l \ge x_j$, therefore by (2.5) we have

$$F(x') \leq F(x)$$
.

The other inequality can similarly be proved because

$$F(x) \leq F(A_{li}x)$$

for l < j and $x_l \le x_j$, and x^* can be expressed as consecutive A_{lj} (l < j) transformations performed on x, while $x_l \le x_j$. Therefore

$$F(x) \leq F(x^*)$$
.

Remark. The factorization used in the proof of the theorem can be verified by induction. The statement is clearly true for n=2. Let us suppose that the statement is also true for $n=k \ge 2$ and let $x=(x_1, x_2, ..., x_k, x_{k+1})$ be an arbitrary (k+1)-tuple. If $x_1'=x_1$, then the proof is completed, because for the k-tuple $(x_2, x_3, ..., x_k, x_{k+1})$ the statement is true which implies that it is true for x. If $x_1'=x_j$ (1 < j), then by definition of x' we have $x_1 \ge x_j$ and thus the (k+1)-tuples $A_{1j}x$ and x' will have the same first element. For the further k elements of the (k+1)-tuple $A_{1j}x$ the statement will be true by assumption.

For example, if x=(1, 5, 7, 2, 3, 4, 6), then we have

$$x' = A_{67}A_{56}A_{46}A_{35}A_{24}x$$

and similarly

$$x^* = A_{46} A_{37} A_{27} A_{13} x$$
.

3. Special cases

(a) First, we consider the functions having the form

(3.1)
$$F(x) = \sum_{i=1}^{n} \frac{a_i}{x_i} \qquad (x_i \in (0, \infty), i = 1, 2, ..., n),$$

where $a_i \ge 0$, i=1, 2, ..., n are given numbers. By Theorem 1 the function (3. 1) has the \mathcal{P} property if and only if the functions

$$\frac{a_k}{t} - \frac{a_{k+1}}{t} = \frac{a_k - a_{k+1}}{t} \qquad k = 1, 2, ..., n-1$$

are nondecreasing, i.e. $a_k \le a_{k+1}$, k = 1, 2, ..., n-1. This means that (3.1) has the property \mathscr{P} if and only if the sequence $\{a_k\}_1^n$ is nondecreasing. This is a generalization of the theorem 368 in [1] because we also proved the necessarity of the condition. We remark that this result is valid for all real, not necessarily nonnegative a_i , i=1,2,...,n.

(b) As a generalization of the example (a) we consider the functions

(3.2)
$$F(x) = \sum_{i=1}^{n} f\left(\frac{a_i}{x_i}\right) \quad (x_i \in (0, \infty), i = 1, 2, ..., n),$$

where $a_i \ge 0$, i = 1, 2, ..., n are given numbers and f(t) is a real valued function in the interval $[0, \infty)$. By Theorem 1 the function (3. 2) has the property \mathcal{P} if and only if the functions

(3.3)
$$\varphi_k(t) = f\left(\frac{a_k}{t}\right) - f\left(\frac{a_{k+1}}{t}\right) \qquad k = 1, 2, ..., n-1$$

are nondecreasing in the interval $(0, \infty)$. By reason of this result Theorem 2 of London's paper [3] states the following.

Theorem 2. If f(t) is convex in the interval $[0, \infty)$, $f(0) \le f(t)$ for $t \ge 0$ and $0 \le a_k \le a_{k+1}$, then the function (3.3) is nondecreasing.

The proof of this theorem will be performed in a way considerable different as given in [3]. For this the following simple Lemma will be used.

Lemma. If f(t) is convex in the interval $[0, \infty)$ and $f(0) \le f(t)$ for $t \ge 0$, then (3.4) $f(x_1) + f(x_2) \le f(y_1) + f(y_2)$

for arbitrary $x_i, y_i \in [0, \infty)$ with the property $x_1 \leq y_1$ and $x_1 + x_2 \leq y_1 + y_2$.

PROOF. Let $x_3 = y_1 + y_2 - x_1 - x_2$ and $y_3 = 0$. From the well known theorem of Karamata [2] (see also [1], Theorem 108) we have

$$f(x_1)+f(x_2)+f(x_3) \le f(y_1)+f(y_2)+f(y_3),$$

hence, because of

$$f(y_3) = f(0) \le f(y_1 + y_2 - x_1 - x_2) = f(x_3),$$

we obtain (3. 4).

PROOF of the Theorem 2. Let 0 < x < y be arbitrary numbers and we define

$$x_1 = \frac{a_k}{x}, \quad x_2 = \frac{a_{k+1}}{y}, \quad y_1 = \frac{a_{k+1}}{x}, \quad y_2 = \frac{a_k}{y}.$$

We have $x_1 \le y_1$ and $x_1 + x_2 \le y_1 + y_2$, which implies (3.4) by the Lemma, i.e.

$$f\left(\frac{a_k}{x}\right) + f\left(\frac{a_{k+1}}{y}\right) \le f\left(\frac{a_{k+1}}{x}\right) + f\left(\frac{a_k}{y}\right).$$

Hence

$$\varphi_k(x) \leq \varphi_k(y)$$
.

This means that φ_k is nondecreasing.

(c) We now consider the functions

(3.5)
$$F(x) = \sum_{i=1}^{n} \log \left(1 + \frac{a_i}{x_i} \right) \qquad (x_i \in (0, \infty), i = 1, 2, ..., n)$$

where $a_i \ge 0$, i=1, 2, ..., n are given numbers. By Theorem 1 the function (3. 5) has the property \mathcal{P} if and only if the functions

$$\log\left(1 + \frac{a_k}{t}\right) - \log\left(1 + \frac{a_{k+1}}{t}\right) = \log\frac{t + a_k}{t + a_{k+1}} \qquad k = 1, 2, ..., n - 1$$

are nondecreasing, i.e. the sequence $\{a_k\}_1^n$ is nondecreasing. This result is a generalization of the theorem of MINC [4]. We remark that this result is independent from Theorem 2 because the function $\log(1+t)$ is concave.

(d) As a generalization of the example (c) we consider the functions having the form

(3.6)
$$F(x) = \sum_{i=1}^{n} f\left(1 + \frac{a_i}{x_i}\right) \qquad (x_i \in (0, \infty), i = 1, 2, ..., n),$$

where $a_i \ge 0$, i = 1, 2, ..., n are given numbers and f(t) is a real valued function defined in the interval $[1, \infty)$. By theorem 1 the function (3. 6) has the property \mathcal{P} if and only if the functions

(3.7)
$$\psi_k(t) = f\left(1 + \frac{a_k}{t}\right) - f\left(1 + \frac{a_{k+1}}{t}\right) \qquad k = 1, 2, ..., n-1$$

are nondecreasing in the interval $(0, \infty)$. By reason of this result Theorem 1 of [3] can be presented also in the following form.

Theorem 3. Let f(t) be a real valued function in the interval $[0, \infty)$ for which

- (i) $f(1) \leq f(t)$ if $t \geq 1$; and
- (ii) $h(t) = f(e^t)$ is convex in $[0, \infty)$, are valid. Then the function (3.7) is non-decreasing provided that $0 \le a_k \le a_{k+1}$.

PROOF. We shall show that this result can easily be obtained from the Lemma, too. By the conditions (i) and (ii) the function h(t) is convex in $[0, \infty)$ and $h(0) \le h(t)$ for all $t \ge 0$. Let 0 < x < y be arbitrary numbers and we define

$$x_1 = \log\left(1 + \frac{a_k}{x}\right), \quad x_2 = \log\left(1 + \frac{a_{k+1}}{y}\right),$$

 $y_1 = \log\left(1 + \frac{a_{k+1}}{x}\right), \quad y_2 = \log\left(1 + \frac{a_k}{y}\right).$

We have $x_1 \le y_1$ and $x_1 + x_2 \le y_1 + y_2$, which — by the Lemma — implies $h(x_1) + h(x_2) \le h(y_1) + h(y_2)$,

i.e.

$$h\left[\log\left(1+\frac{a_k}{x}\right)\right] - h\left[\log\left(1+\frac{a_{k+1}}{x}\right)\right] \le h\left[\log\left(1+\frac{a_k}{y}\right)\right] - h\left[\log\left(1+\frac{a_{k+1}}{y}\right)\right].$$

From this inequality — because of $f(1+t) = h[\log (1+t)]$ — we obtain

$$\psi_k(x) \leq \psi_k(y),$$

i.e. the function ψ_k is nondecreasing.

4. On the Wiener's inequality

The inequality of WIENER [5] states that if $c_2 \ge c_3 \ge ... \ge c_{2n} \ge 0$ and

$$x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) (x_i \ge 0, y_i \ge 0, i = 1, 2, ..., n)$$

are arbitrary n-tuples, then

(4.1)
$$\sum_{i=1}^{n} \sum_{k=1}^{n} c_{i+k} x_i y_k \leq \sum_{i=1}^{n} \sum_{k=1}^{n} c_{i+k} x_i^* y_k^*.$$

As a generalization of this theorem we shall prove the following one.

Theorem 4. Let $g_l(t)$, l=2, 3, ..., 2n be real valued functions defined in the interval $(0, \infty)$. For arbitrary n-tuples $x=(x_1, x_2, ..., x_n)$ and $y=(y_1, y_2, ..., y_n)$ $(x_i, y_i \in (0, \infty), i=1, 2, ..., n)$ the inequality

holds if the functions

$$(4.3) g_l(t) - g_{l+1}(t) l = 2, 3, ..., 2n-1$$

are nondecreasing in the interval $(0, \infty)$.

PROOF. By Theorem 1 we have

$$\sum_{i=1}^{n} \sum_{k=1}^{n} g_{i+k}(x_{i}y_{k}) = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} g_{i+k}(x_{i}y_{k}) \right) \leq$$

$$\leq \sum_{i=1}^{n} \left(\sum_{k=1}^{n} g_{i+k}(x_{i}y_{k}^{*}) \right) = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} g_{i+k}(x_{i}y_{k}^{*}) \right) \leq \sum_{k=1}^{n} \left(\sum_{i=1}^{n} g_{i+k}(x_{i}^{*}y_{k}^{*}) \right),$$

which proves the theorem.

As an example we consider the functions $g_l(t) = c_l t$, where c_l , l = 2, 3, ..., 2n are given numbers. By Theorem 4 the inequality (4. 1) holds if the sequence $\{c_l\}_{2}^{2n}$ is nonincreasing.

As a further example we define the functions

$$g_l(t) = \frac{c_l}{t} \log \left(1 + \frac{c_l}{t} \right)$$
 $l = 2, 3, ..., 2n,$

where $0 \le c_2 \le c_3 \le ... \le c_{2n}$ are given numbers. By Theorem 4 we have the inequality

$$\sum_{i=1}^{n} \sum_{k=1}^{n} \frac{c_{i+k}}{x_{i} y_{k}} \log \left(1 + \frac{c_{i+k}}{x_{i} y_{k}} \right) \leq \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{c_{i+k}}{x_{i}^{*} y_{k}^{*}} \log \left(1 + \frac{c_{i+k}}{x_{i}^{*} y_{k}^{*}} \right)$$

for all $x=(x_1, x_2, ..., x_n)$ and $y=(y_1, y_2, ..., y_n)$ $(x_i, y_i \in (0, \infty), i=1, 2, ..., n)$. This inequality is the same as the following one:

$$G(x, y) = \prod_{i=1}^{n} \prod_{k=1}^{n} \left(\frac{c_{i+k}}{x_i y_k} + 1 \right)^{\frac{c_{i+k}}{x_i y_k}} \le G(x^*, y^*).$$

References

- G. H. HARDY, J. E. LITTLEWOOD and G. PÓLYA, Inequalities, Cambridge, 1934.
 T. KARAMATA, Sur une inégalité relative aux functions convexes, Publ. Math. Univ. Belgrade, 1 (1932), 145-148.
- [3] D. London, Rearrangement inequalities involving convex functions, Pac. J. Math., 34 (1970), 749—753.
- [4] H. MINC, Rearrangement inequalities (in print).
 [5] F. WIENER, Elementarer Beweis eines Reihensatzes von Herrn Hilbert, Math. Ann. 68 (1910), 361—366.

(Received July 18, 1972.)