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The existence of maximal elements and
equilibria in Frechet spaces

By GHANSHYAM MEHTA (Brisbane), KOK-KEONG TAN (Halifax)
and XIAN-ZHI YUAN∗ (Brisbane and Halifax)

Abstract. In this paper we first give some existence theorems of maximal el-
ements of condensing correspondences. Then two existence theorems of equilibria of
abstract economies (resp., generalized games) are derived by maximal element theo-
rems in Frechet spaces. Finally, a fixed point theorem is proved which improves the
corresponding results of Barbolla (1985), Gale and Mas-Colell (1975) and Flo-
renzano (1981).

1. Introduction

Let E be a vector space and A ⊂ E. We shall denote by co A the
convex hull of A. If A is a subset of a topological space X, the interior and
closure of A in X are denoted by intX A and clX A, respectively; or simply
intA and cl A if there is no ambiguity. Let X be a non-empty set. We
shall denote by 2X the family of all subsets of X. Let X and Y be sets and
F, G : X → 2Y a set-valued mapping. Then (i): the graph of F denoted
by GraphF , is the set {(x, y) ∈ X × Y : y ∈ F (x)}; and (ii): the mapping
F ∩G : X → 2Y is defined by (F ∩G)(x) := F (x) ∩G(x) for each x ∈ X.
Suppose X and Y are topological spaces and F : X → 2Y . Then (1): F is
said to be lower (resp., upper) semicontinuous if for any closed (res., open)
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subset U of Y , the set {x ∈ X : F (x) ⊂ U} is closed (resp., open) in X;
(2): F has open lower sections if F−1(y) := {x ∈ X : y ∈ F (x)} is open in
X for each y ∈ Y ; (3): F is said to be continuous if F is both upper and
lower semicontinuous; and (4): F has a maximal element if there exists a
point x ∈ X such that F (x) = ∅.

If X is a set, Y is a subset of a vector space and F : X → 2Y such
that for each x ∈ X, co F (x) ⊂ Y , the mapping coF : X → 2Y is defined
by (co F )(x) := co F (x) for each x ∈ X. If {Xi : i ∈ I} and {Yi : i ∈ I}
are collections of sets and Fi : Πj∈IXj → 2Yi is a set-valued mapping
for each i ∈ I, the mapping Πi∈IFi : Πi∈IXi → 2Πi∈IYi is defined by
(Πi∈IFi)(x) := Πi∈IFi(x) for each x ∈ Πi∈IXi. We note that if X is a
topological space, Y is a topological vector space and F : X → 2Y is lower
semicontinuous, then the mapping co F is also lower semicontinuous by
Proposition 2.6 of Michael [17].

Let I be a (finite or infinite) set of agents (resp., players). An abstract
economy (resp., a generalized game) G = (Xi;Ai;Pi)i∈I is defined as a
family of triples (Xi; Ai; Pi)i∈I , where Xi is a topological space, where
for each i ∈ I, Ai : Πj∈IXj → 2Xi is a constraint correspondence and
Pi : Πj∈Xj → 2Xi is a preference correspondence. An equilibrium point
for G (e.g., see Borglin and Keiding [3, p. 315], Tarafdar [24, p. 212]
or Yannelis and Prabhakar [26, p. 242]) is a point x∗ ∈ X := Πj∈IXj

such that for each i ∈ I, πi(x∗) ∈ Ai(x∗) and Ai(x∗) ∩ Pi(x∗) = ∅ where
πi : X → Xi is the projection for each i ∈ I.

Throughout this paper, C denotes a lattice with a least element zero 0.
Now we recall some definitions (e.g., see Fitzpatrick and Petryshyn [7]).

Let X be a Hausdorff topological vector space. Then a mapping
Ψ : 2X → C is said to be a measure of non-compactness provided that the
following conditions hold for any A, B ∈ 2X :

(1) Ψ(A) = 0 if and only if A is precompact.
(2) Ψ(coA) = Ψ(A), where coA denotes the closed convex hull of A.
(3) Ψ(A ∪B) = max{Ψ(A), Ψ(B)}.
It follows from (3) that if A ⊂ B, then Ψ(A) ≤ Ψ(B). The above no-

tion is a generalization of the set-measure of non-compactness introduced
by Kuratowski [13] and the ball-measure of non-compactness introduced
by Gohberg et al [11] defined either in terms of a family of seminorms
when X is a locally convex topological vector space or of a single norm
when X is a Banach space. For more details we refer the readers to Fitz-

patrick and Petryshyn [7].
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Let Ψ : 2X → C be a measure of non-compactness of X and D ⊂ X.
A mapping T : D → 2X is said to be Ψ-condensing provided that if Ω ⊂ D

and Ψ(T (Ω)) ≥ Ψ(Ω), then Ω is relatively compact.
Note that if T : D → 2X is a compact mapping (i.e., T (D) =⋃

x∈D T (x) is precompact), then T is Ψ-condening for any measure of
non-compactness Ψ. Various Ψ-condensing mappings which are not com-
pact have been considered by Borisovich et al [4], Massatt [14], Nuss-

baum [18], Petryshyn and Fitzpatrick [19], Reich [20], Sadovskii [21]
and many others. Moreover, when the measure of non-compactness Ψ is ei-
ther the set-measure of non-compactness or ball-measure of non-compact-
ness, Ψ-condensing mappings are called condensing mappings, e.g., see
Massatt [14], Nussbaum [18] and Sadovskii [21].

In this paper we first give some existence theorems of maximal ele-
ments of Ψ-condensing correspondences. Two existence theorems of equi-
libria of abstract economies are then proved in Frechet spaces. Finally
some fixed point theorems are also derived. These results improve cor-
responding results of Barbolla [2], Gale and Mas-Colell [10] and
Mehta [15–16].

2. Maximal elements

Recall that a Frechet space is a locally convex Hausdorff topological
vector space whose topology is induced by a complete translation invariant
metric.

We first state the following result which is an easy consequence of
Theorem 1 of Fitzpatrick and Petryshyn [7, p. 18].

Lemma 2.1. Let D be a non-empty closed and convex subset of a

Frechet space X and Ψ : 2X → C be a measure of non-compactness. Sup-

pose a multivalued correspondence F : D → 2D is upper semicontinuous

and Ψ-condensing with non-empty compact convex values. Then F has a

fixed point.

Now we give the following results on the existence of maximal elements
for Ψ-condensing correspondences:
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Theorem 2.2. Let E be a Frechet space, Ψ : 2X → C be a measure
of non-compactness and X a non-empty closed and convex subset of E.
Suppose that P : X → 2X is a multivalued mapping such that the following
conditions are satisfied:

(i) for each x ∈ X, x /∈ co P (x);
(ii) for each x ∈ X such that P (x) 6= ∅, there exists y ∈ X such

that x ∈ intP−1(y);
(iii) P is Ψ-condensing.

Then P has a maximal element in X.

Proof. Suppose that the conclusion were false. Then for each x ∈ X,
P (x) 6= ∅. Now define the mapping F : X → 2X by F (x) = {y ∈ X : x ∈
intP−1(y)} for each x ∈ X. Then for each y ∈ X, F−1(y) = intP−1(y)
is open in X so that F has open lower sections. Also for each x ∈ X,
F (x) is non-empty by (ii). Hence the mapping co F : X → 2X also has
open lower sections by Lemma 5.1 of Yannelis and Prabhakar [26, p. 239].
Now by Browder’s selection theorem in [5] (see also Theorem 3.1 of [26,
p. 235]), there exists a continuous (single-valued) function f : X → X
such that f(x) ∈ coF (x) for each x ∈ X. Since P is Ψ-condensing, so is
the mapping co P . Thus co F is Ψ-condensing since co F (x) ⊂ coP (x) and
hence f is also Ψ-condensing. Now f satisfies all hypotheses of Lemma 2.1.
By Lemma 2.1, f has a fixed point x0 ∈ X, i.e. x0 = f(x0) ∈ coF (x0) ⊂
co P (x0), which contradicting the condition (i). Therefore the conclusion
must hold. ¤

Theorem 2.2 improves Theorem of Mehta [15, p. 70] in the following
ways: (1) X is a subset of a Frechet space instead of a Banach space;
(2) X need not bounded; and (3) P is Ψ-condensing instead of being set
condensing.

We also have the following existence theorem of maximal elements
for a lower semicontinuous correspondence which has closed and convex
values.

Theorem 2.3. Let E be a Frechet space and X a non-empty closed
and convex subset of E. Suppose that P : X → 2X is lower semicontinu-
ous with closed and convex values such that the following conditions are
satisfied:

(i) for each x ∈ X, x /∈ P (x);



Maximal elements and equilibria 235

(ii) P is Ψ-condensing.

Then P has a maximal element in X.

Proof. Suppose that the conclusion were false, then P (x) is non-
empty closed and convex subset of X for each x ∈ X. Since P is also
lower semicontinuous, by Theorem 3.2” of Michael [17], there exists a
continuous (single-valued) function f : X → X such that f(x) ∈ P (x)
for each x ∈ X. Since P is Ψ-condensing, so is f . Now f satisfies all
hypotheses of Lemma 2.1. By Lemma 2.1, there exists a point x0 ∈ X
such that x0 = f(x0) ∈ P (x0), which also contradicts the condition (i).
Therefore there exists x ∈ X such that P (x) = ∅. ¤

We note that Theorem 2.3 deals with the existence of maximal ele-
ments for lower semicontinuous correspondences. In what follows, we shall
give the following existence theorem for upper semicontinuous correspon-
dences.

Theorem 2.4. Let E be a Frechet space, Ψ : 2E → C be a measure
of non-compactness and X a non-empty closed and convex subset of E.
Suppose that P : X → 2X is upper semicontinuous and Ψ-condensing with
compact convex values. If P is irreflexive (i.e, for each x ∈ X, x /∈ P (x)),
then there exists x0 ∈ X such that P (x0) = ∅.

Proof. If the conclusion were false, then P (x) is non-empty closed
and convex subset of X for each x ∈ X. Thus by Lemma 2.1, there exists
x0 ∈ X such that x0 ∈ P (x0), but this contradicts the assumption that P
is irreflexive. Therefore the conclusion must hold. ¤

3. Existence of equilibria

In this section, we shall prove the existence of equilibria for abstract
economies. Before we prove our main results, we will need Lemma 2.10 in
[23] which is a generalization of Lemma 6.1 in [26, p. 241]; for completeness,
we shall include its proof:

Lemma 3.1. Let X and Y be topological spaces, A be a closed (resp.,
open) subset of X. Suppose F1 : X → 2Y and F2 : A → 2Y are lower
(resp., upper) semicontinuous such that F2(x) ⊂ F1(x) for all x ∈ A. Then
the mapping F : X → 2Y defined by

F (x) =
{

F1(x), if x /∈ A,

F2(x), if x ∈ A
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is also lower (resp., upper) semicontinuous.

Proof. Let U be any closed (resp., open) subset of Y . Clearly we
have

{x ∈ X : F (x) ⊂ U} = {x ∈ A : F2(x) ⊂ U} ∪ {x ∈ X \A : F1(x) ⊂ U}
= {x ∈ A : F2(x) ⊂ U} ∪ {x ∈ X : F1(x) ⊂ U}.

Since A and U are closed (resp., open) and F1 and F2 are lower (resp.,
upper) semicontinuous, the set {x ∈ X : F (x) ⊂ U} is also closed (resp.,
open). Therefore, F is lower (resp., upper) semicontinuous. ¤

In the rest part of this section, the set I of agents (resp., players) is
assumed to be countable.

Theorem 3.2. Let Γ = (Xi; Ai; Pi)i∈I be an abstract economy where
I is countable. Suppose for each i ∈ I, the following conditions are satis-
fied:

(i) Xi is a non-empty closed convex subset of a Frechet space Ei;

(ii) Ai is upper semicontinuous with non-empty compact convex val-
ues;

(iii) the mapping A : X → 2X defined by A(x) = Πi∈IAi(x) for each

x ∈ X = Πi∈IXi is Ψ-condensing, where Ψ : 2Πj∈IEj → C is a
measure of non-compactness;

(iv) for each x ∈ X, πi(x) /∈ Ai(x) ∩ Pi(x);

(v) the set Ui = {x ∈ X : Ai(x) ∩ Pi(x) 6= ∅} is open in X;

(vi) Pi is upper semicontinuous on Ui such that for each x ∈ Ui, Pi(x)
is closed and convex.

Then there exists x∗ ∈ X such that for each i ∈ I, πi(x∗) ∈ Ai(x∗)
and Ai(x∗) ∩ P (x∗) = ∅.

Proof. Fix an i ∈ I. Define ψi : Ui → 2Xi by ψi(x) = Ai(x) ∩ Pi(x)
for each x ∈ Ui, then ψi is upper semicontinuous on Ui by (ii), (vi) and
Proposition 2.5.2 of [1, p. 71]. We now define the correspondence Fi : X →
2Xi by

Fi(x) =
{

ψi(x), if x ∈ Ui,

Ai(x), if x /∈ Ui.

By Lemma 3.1, Fi is upper semicontinuous with non-empty compact con-
vex values.
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Now let F (x) = Πi∈IFi(x) for each x ∈ X. Then F is a upper
semicontinuous with non-empty compact convex values by Theorem 7.3.14
of [12, p. 88]. Since F (x) ⊂ A(x) for each x ∈ X and A is Ψ-condensing, F
is also Ψ-condensing. Since I is countable, X is also a closed and convex
subset of the Frechet space Πi∈IEi. Therefore F satisfies all hypotheses of
Lemma 2.1. By Lemma 2.1, there exists x∗ ∈ X such that x∗ ∈ F (x∗). By
(iv), x∗ /∈ Ui for each i ∈ I; it follows that for each i ∈ I, πi(x∗) ∈ Ai(x∗)
and Ai(x∗) ∩ P (x∗) = ∅. ¤

Theorem 3.3. Let Γ = (Xi; Ai; Pi)i∈I be an abstract economy where
I is countable. Suppose for each i ∈ I, the following conditions are satis-
fied:

(i) Xi is a non-empty closed and convex subset of a Frechet space Ei;

(ii) Ai is lower semicontinuous with non-empty closed convex values;

(iii) the mapping A : X → 2X defined by A(x) = Πi∈IAi(x) is Ψ-

condensing for each x ∈ X = Πi∈IXi, where Ψ : 2Πj∈IEj → C is
a measure of non-compactness;

(iv) for each x ∈ X, πi(x) /∈ Ai(x) ∩ Pi(x);
(v) the set Ui := {x ∈ X : Ai(x) ∩ Pi(x) 6= ∅} is closed in X.

(vi) the mapping Ai ∩ Pi is lower semicontinuous on Ui such that for
each x ∈ Ui, Ai(x) ∩ Pi(x) is closed and convex.

Then there exists x∗ ∈ X such that for each i ∈ I, πi(x∗) ∈ Ai(x∗) and
Ai(x∗) ∩ Pi(x∗) = ∅.

Proof. Fix an i ∈ I. Define Fi : X → 2Xi by

Fi(x) =
{

Ai(x) ∩ Pi(x), if x ∈ Ui,

Ai(x), if x /∈ Ui.

By Lemma 3.1, Fi is lower semicontinuous with non-empty closed and
convex values. Then by Michael’s selection theorem in [17, Theorem 3.2”]
again, there exists a continuous (single-valued) mapping fi : X → Xi such
that fi(x) ∈ Fi(x) for each x ∈ X.

Now define f : X → X by f(x) = {fi(x)}i∈I for each x ∈ X. Then
f is continuous and f(x) ∈ F (x) = Πi∈IFi(x) ⊂ Πi∈IAi(x). Since A is
Ψ-condensing, it follows that f is also Ψ-condensing. Since I is countable,
X = Πi∈IXi is a non-empty closed and convex subset of the Frechet space
Πi∈IEi. Therefore f satisfies all hypotheses of Lemma 2.1. By Lemma 2.1,
there exists x∗ ∈ X such that f(x∗) = x∗. Note that for each i ∈ I, if
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x∗i ∈ Ui, then πi(x∗) = fi(x∗) ∈ Ai(x∗) ∩ Pi(x∗) which contradicts (iv).
Hence for each i ∈ I, we must have πi(x∗) /∈ Ui and thus πi(x∗) ∈ Ai(x∗)
and Ai(x∗) ∩ Pi(x∗) = ∅. ¤

We also have that:

Theorem 3.4. Let Γ = (Xi; Ai; Pi)i∈I be an abstract economy where
I is countable. Suppose for each i ∈ I, the following conditions are satis-
fied:

(i) Xi is a non-empty closed and convex subset of a Frechet space
Ei;

(ii) Ai is continuous with non-empty compact and convex values;

(iii) the mapping A :X = Πi∈IXi → 2X defined by A(x) = Πi∈IAi(x)
for each x ∈ X is Ψ-condensing, where Ψ : 2Πj∈IEj → C is a
measure of non-compactness;

(iv) the set Ui = {x ∈ X : Ai(x)∩ Pi(x) 6= ∅} is either open or closed
in X;

(v) the mapping Ai ∩ Pi is lower semicontinuous on Ui such that for
each x ∈ Ui, Ai(x) ∩ Pi(x) is closed and convex.

Then there exists x∗ ∈ X such that for each i ∈ I, either πi(x∗) ∈ Ai(x∗)∩
Pi(x∗) or πi(x∗) ∈ Ai(x∗) and Ai(x∗) ∩ Pi(x∗) = ∅.

Proof. Fix an i ∈ I. By (v), Theorem 3.2” of Michael [17, p. 367], it
follows that there exists a single-valued continuous mapping fi : Ui → Xi

such that such that fi(x) ∈ Ai(x) ∩ Pi(x) for each x ∈ Ui. We are going
to prove the results by following two cases.

Case 1. Suppose Ui is open in X. Define Fi : X → 2Xi by

Fi(x) =
{ {fi(x)}, if x ∈ Ui,

Ai(x), if x /∈ Ui;

then by (ii) and Lemma 3.1, Fi is upper semicontinuous with non-empty
compact convex values.

Case 2. Suppose Ui is closed. Define F ′i : X → 2Xi by

F ′i (x) =
{ {fi(x)}, if x ∈ Ui,

Ai(x), if x /∈ Ui;

then by (ii) and Lemma 3.1, F ′i is lower semicontinuous with non-empty
compact convex values. By the extension result of continuous selections
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of Michael [17, Proposition 1.4(b)], there exists another single-valued con-
tinuous mapping f ′i : X → Xi such that f ′i(x) ∈ F ′i (x) for each x ∈ X

(and indeed f ′i(x) = fi(x) if x ∈ Ui). Let Fi : X → 2Xi be defined by
Fi(x) := {f ′i(x)} for each x ∈ X. Then Fi is upper semicontinuous (in
fact, continuous) with non-empty compact convex values.

Now we define a set-valued mapping F : X→ 2X by F (x) := Πi∈IFi(x)
for each x ∈ X. Then F is upper semicontinuous with non-empty compact
convex values (e.g., see Theorem 7.3.14 of Klein and Thompson [12,
p. 88]) and F (x) ⊂ A(x) for each x ∈ X. Since A is Ψ-condensing,
so is the mapping F . By Lemma 2.1, there exists x∗ ∈ X such that
x∗ ∈ F (x∗). It follows that for each i ∈ I, either πi(x∗) ∈ Ai(x∗) ∩ Pi(x∗)
or πi(x∗) ∈ Ai(x∗) and Ai(x∗) ∩ Pi(x∗) = ∅. ¤

By Theorem 3.1’’’ of Michael [17, p. 368] instead of his Theorem 3.2”
in [17, p. 367], the same argument used in proving Theorem 3.4 can likewise
prove the following:

Theorem 3.5. Let Γ = (Xi; Ai; Pi)i∈I be an abstract economy where

I is countable. Suppose for each i ∈ I, the following conditions are satis-

fied:

(i) Xi is a non-empty closed and convex subset of a separable Banach

space Ei;

(ii) Ai is continuous with non-empty compact convex values;

(iii) the mapping A :X = Πi∈IXi → 2X defined by A(x) = Πi∈IAi(x)
for each x ∈ X is Ψ-condensing, where Ψ : 2Πj∈IEj → C is a

measure of non-compactness;

(iv) the set Ui := {x ∈ X : Ai(x)∩Pi(x) 6= ∅} is either open or closed

in X;

(v) the mapping Ai ∩ Pi is lower semicontinuous on Ui such that for

each x ∈ Ui, Ai(x)∩Pi(x) is either convex finite dimensional (not

necessarily closed), or convex closed, or has an interior point (not

necessarily closed).

Then there exists x∗ ∈ X such that for each i ∈ I, either πi(x∗) ∈ Ai(x∗)∩
Pi(x∗) or πi(x∗) ∈ Ai(x∗) and Ai(x∗) ∩ Pi(x∗) = ∅.

Remark 3.1. We thank the anonymous referee to bring our attention
of the statement of the condition (v) in Theorem 3.5.
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As an application of Theorem 3.5, we have the following

Corollary 3.6. Let I be a countable set. For each i ∈ I, let Xi be
a non-empty compact convex subset of a finite dimensional space Ei and

Pi : X = Πj∈IXj → 2Xi be lower semicontinuous on the set Ui = {x ∈ X :
Pi(x) 6= ∅} such that for each x ∈ Ui, Pi(x) is convex. If for each i ∈ I, Ui

is either open or closed in X, then there exists x∗ ∈ X such that for each
i ∈ I either πi(x∗) ∈ Pi(x∗) or Pi(x∗) = ∅.

Proof. For each i ∈ I, let Ai : X → 2Xi be defined by Ai(x) = Xi

for each x ∈ X. Then Ai is continuous with compact convex values and
Ai is also Ψ-condensing, where Ψ : 2Πi∈IEi → R is the ball-measure (or
set-measure) of non-compactness on Πi∈IEi (which is a metric space as I
is countable). Therefore by Theorem 3.5, there exists x∗ ∈ X such that
for each i ∈ I either πi(x∗) ∈ Pi(x∗) or Pi(x∗) = ∅. ¤

Corollary 3.6 generalizes Theorem 1 of Barbolla [2, p. 206] which
in turn improves the fixed point theorem of Gale and Mas-Colell [10,
p. 10] and Florenzano [8] in the following ways: (1) the index set I is
countable instead of finite and (2) for each i ∈ I, Ui is either open or closed
instead of Ui being open for all i ∈ I or Ui being closed for all i ∈ I. We
remark that our arguments in proving Theorem 3.4 and Theorem 3.5 are
different from that of Barbolla [2].

For the existence of equilibrium point of abstract economies in which
the constraint correspondences are not condensing in topological vector
spaces, we refer [22–26] and the references wherein to the reader.

Acknowledgment. The authors express grateful thanks to anonymous
referee for his/her carefully reading and comments which lead to present
version of this paper, in particular for the proof of Theorem 3.4.
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