On locally C*-algebras

By B. D. MALVIYA (Denton, Texas)

1. Introduction

As is well known the concept of Banach algebras have been generalized to
locally m-convex algebras by MICHAEL [5]. He obtained many results on locally
m-convex algebras with and without involution. Some results concerning spectrum,
topological divisors of zero, and the representations of locally m-convex *-algebra
have been obtained in [2], [3], [4]. INoUE [1] has recently introduced the notion of
locally C™-algebras. The main objective of the present paper is to obtain further
results on locally C*-algebras by using some of the techniques developed by INOUE
[1]. In particular we consider the representation of a locally C*-algebra on a Hilbert
space. We also prove that under certain conditions a locally C*-algebra admits
a complete set of irreducible representations. An inequality involving the posi-
tive functionals on a locally C*-algebra and spectral radius is also obtained.

2. Preliminaries

A topological algebra is an algebra and a topological linear space such that
the ring multiplication is continuous. A locally convex algebra is a topological
algebra and a locally convex linear space. A topological algebra 4 with usual in-
volution * such that x —x*(x€4) is continuous, is called topological *-algebra.
A locally m-convex algebra (respectively *-algebra) A4 is a Hausdorff topological
vector space which is an algebra (respectively a *-algebra for which x -x* is con-
tinuous) having a fundamental family (U) of circled convex neighbourhoods of
0€4 such that UUCU. It is clear that every locally m-convex algebra is a locally
convex algebra with jointly continuous ring multiplication. The topology in a locally
m-convex algebra can be generated by a collection {p;: j€J} of semi-norms satisfy-
ing p;(xy)=p;(x)p;(y) for all x, y€A and all j€J. By an m-base in a locally m-con-
vex algebra 4, we understand the collection {U} of subsets of A such that U is
convex, symmetric and scalar multiples of {U} form a base for the neighbourhood
of the origin.

Following [1] we define a locally C*-algebra as follows.
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Definition 1.1. A *-algebra A is called a locally C*-algebra if there exists a
family of semi-norms {p;: j€J} defined on A such that

1. {p;} defines a complete Hausdorfl locally convex topology on A.
2. pj(xy)=p;(x)p;(y) for all x,y€A and all jJ.

3. pj(x*)=p;(x) for all x€A and all jeJ.

4. p;(x*x)=p;(x)* for all x€A4 and all j€J.

It may be mentioned that a closed *-subalgebra of a locally C*-algebra is
also a locally C™-algebra. Our locally C*-algebras are always complete. Let 4 be
a locally C*-algebra. Define N;={x€A4:p;(x)=0}. Obviously N; is a closed ideal
in A. Let A;=A/N; be given a norm V; defined by V;(x+N;) = p;(x) for x€A.
Then 4; is a normed -algebra with the norm as defined above and furthermore
x5 x; ||-*!|r 2, where x is any pre-image of x; under the natural homomorphism
n; The complellon A; of A;is a C*-algebra. We shall follow the terminology and
nolatlons used by Inouc [1] as closely as possible. For general terms not defined in
this paper a reference is made to RICKART [7].

Let 4 be an algebra. An element x€A is said to be left (respectively right)
quasi-regular if there exists an element y €4 such that x+y—yx = 0 (respectively
x+y—xy = 0). An element which is both left and right quasi-regular is simply
called quasi-regular. An element which is not quasi-regular is called quasi-singular.
The spectrum of an element x € A, written Sp,(x), is above {0} the set {/:i 'x is
quasi-singular in 4}. The spectral radius of an element x € A, written v 4(x), is defined
as v (x)=max {|A|: )ESpA(r)} The spectral radius of an element x of a complete
locally m-convex algebra A4 is given by v,(x) = sup lim (p,(x"))”" [5, Corollary

5.3, p. 22]. L3
3. Spectrum

This section mainly concerns with theorems related to spectrum of an element in
a locally C*-algebra. The set of all complex homomorphism of a commutative
algebra A4 is denoted by @,. For a commutative locally C*-algebra A4, the map
x —X defined by £(p)=0(x), (x€A, @ €d,), is called the Gelfand map. The set of
hermitian elements of a *-algebra A4 is denoted by H,. With the aid of [1, Theorem
3.1, p. 212 and Proposition 3.1, p. 211], it can be proved that the spectrum of an
element x of a complete, commutative locally m-convex algebra A is given by the
set {£(¢):p €d,}). Observe that an element x €A is quasi-regular if and only if
X(p)=1.

Definition 3.1. A *-algebra is called symmetric if x*x is quasi-regular for every
XEA.

Theorem 3.2. Let A be a locally C*-algebra with the family {p;} j€J of semi-
norms and B a symmetric sublocally C*-algebra of A. If x € B is quasi-regular in A,
then x is also quasi-regular in B.

PrOOF. Since h = x"0x(= x*+x—x%x) is quasi-regular in A, therefore
14 Sp4(h). Now by [1, Corollary 2.2, p. 200], Sp,(%) is real. Again using [1, Corollary
2.3, p. 200], it follows that Sp,(#)=Spg(h). Hence 1¢Spg(h) and therefore 4 is
quasi-regular in B. Similar statement holds for x*0x. Hence the theorem is proved.
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Theorem 3.3. Let A be a commutative and symmetric locally C*-algebra without
an identity element and A, , the * -algebra obtained by adjunction of an identity element
to A. Then A, is symmetric.

ProoF. The fact that A4, is a locally C”-algebra follows from [I, Theorem 2.3,
p. 201]. For an arbitrary elementy = E+x€A4,,puth = x*+Cx+x*x. Then h€H,.
Let C be a maximal *-subalgebra of A4 containing /. It is easy to see that C is a closed
*-subalgebra of 4 and therefore a symmetric sublocally C*-algebra of 4. Let ¢
be an arbitrary element @,,. Then by [1, Corollary 2.3, p. 200] applied to C, we have
v*v(p) = |E24+h(p) # 1. Hence the theorem is proved.

4. Representations

As mentioned in the introduction we shall deal with the positive functionals and
*-representations on a locally C*-algebra. We shall use the same notations as
employed by Inoue [1, pp. 211—213].

Let A be a locally C*-algebra with a family {p;}, j€J of semi-norms. Define
U;j={xcA:p;(x)=1}. A" and A7(j) will denote respectively the conjugate space of
A and all linear functionals on A that are bounded on U,.

Let A be a *-algebra and f a positive functional, that is f(x*x)=0 for each
x €A. Define (x, y)=f(y*x). The following is well know for any x, y€A.

(i) f(r*x) = fx"y).

(ii) | f(x* PP = X))

In presence of an identity element, putting y=e in (i) and (ii), we get
(iii) fx*) = f(x).

(iv) - fP=A@f(x"x).

A positive functional f on A is said to be admissible if

&% ok
A )

xea S(x*x)
for each x, a€ A and f(x* x)#0.

Theorem 4.1. Let A be a locally C*-algebra with an identity element e and
fEA*(j). Then |
)P = (fle)v(x*x)
for each x € A.

ProoOF. From the proof of Lemma 4.1.4 in [7, p. 183] it follows that there exists
an element y €4 such that y* = e—x for x €4, provided p;(x")""<1 (or v(x)=<1):
see [5, Corollary 5.3, p. 22]. It also follows from the lemma cited above that if x

4 D
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is hermitian, then y is also hermitian and y»* = y*y = e—x. Let £¢=>0 be given,

Then v[ ) = | and we have

X
v(x)+e

y=e-

v(x)+e&
If x is hermitian, then

f(x)
v(x)+e

0= f()*y) = fle)—

Since ¢ is arbitrary, we get
J(x) = fleyv(x).
Replacing x by x*x, we get
(1) S(x*x) = fle)v(x™x).
By [1, Theorem 3.2, p. 213], we have
2) IS = If1/(x*)
for each x<A4 and j€J(f), where J(f)={j€J: f bounded on U,}.

From (1) and (2),

| f(x)[* = fle)ll fillv(x*x).
Using [1, Corollary 3.2, p. 216], we get

| f(x)]2 = (f(e))?v(x*x),

which is the desired inequality.

Let f be a positive functional on a*-algebra A. Define N,= {x€A: f(x* x)=0}.
Obviously N, is a left ideal in 4. For elements x, and y, in the difference space
A[N,: define f(y*x)=(x,, y,). It is easily verified lf{at AN with this inner product
is a pre-Hilbert space. The completion of A/N, will be denoted by H,.

In the theorems to follow a reference to Hilbert space means the Hilbert space
H, as constructed above.

Definition 4.2. A representation a—7T, of a "-algebra 4 on a Hilbert space
is called a *-representation if 7,.=7,, where T, is the adjoint of 7,: a€A.

Definition 4.3. A representation a— T, of an algebra 4 on a Hilbert space H
is called topologically cyclic if there exists a vector f€ H such that the linear subspace
{T,f:a€ A} is dense in H.

Theorem 4.4. Let A be a locally C*-algebra with an identity element e. Suppose
that A has bounded spectrum. Then there exists a *-representation a—~T, of A on a
Hilbert space which is topologically cyclic with a cyclic vector { such that f(a)=(T,(, (),
where f€A*(j) and is a positive functional.

Proor. The construction of Hilbert space is obvious as indicated before. Let
us write the inner product as f(y*x)=(x,, y,). Define an operator 7, on A/N, by
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T.(y+N;)=xy+N,. The mapping x - T, is obviously a representation. Moreover,
T, x€A, is bounded, since for f,€A/N,, fy=y+N, we have

(T fos T fo) = (xy+ Ny, xy+Np) = ((x)s, (xp)y) = f((x)*xy) =
= (f(e))2v((xy* xp)?),

by Theorem 4.1 above. The extension of 7, to H is bounded and unique. The follow-
ing identity shows that x -7 is a "-representation on A/N, and hence on H,. For
Xg, ¥y €A[N;, we have

(Tuxp, y)=S(y* ax)=1(@"1)* x)=(x;, Teey).

Now by [1, Theorem 3.2 (2), p. 213], fis admissible; see [7, p. 213]. Hence our
theorem follows by an application of [7, Theorem 4.5.4 (iii), p. 215], noting that fis a
positive hermitian functional.

We shall remove the identity restriction from Theorem 4.4 above. The details
of the proof are the same as in Theorem 4.4, so we only give a skeleton of the proof.

Theorem 4.5. Let A be a locally C*-algebra without an identity element and
with bounded spectrum. Let f¢ A*(j) be a positive functional. Then there exists a
*-representation x -~ T, of A on a Hilbert space which is topologically cyclic with a
cyclic vector {y such that f(x)=(T,(s, (s).

PrOOF. Let f be a positive functional on 4. Let 4, be the locally C*-algebra
obtained by adjunction of an identity element; see [1, Theorem 2.3, p. 200]. By
[1, Theorem 3.2, p. 213], f can be extended uniquely to /. Now as in the proof of
Theorem 4.4 above, f(x)=(T.,(,{), where {€H, is a cyclic vector. Here x T, is
a *-representation corresponding to 4,. We are now looking for a Hilbert space
and a cyclic vector when f'is restricted to A. Define H,={¢ € H: T, ¢ =¢ for all x € A).
Write { = {;+{,, where {,€H, and {, € Hi (the orthogonal complement of H,).
Observing the fact that the under the *-representation x -7, H is invariant, we
have f(x)=(T,(,,(,). Define H,={T.(,:x€A}. Obviously H, is invariant. By [6,
Lemma 4.4.1, p. 206]), we have a cyclic vector {, € H,. This proves our assertion
completely.

Definition 4.6. The set of representations is said to be complete if for every
element x,=0 of the algebra A, there exists an irreducible representation x — T,
such that 7, 0.

We now obtain a theorem corresponding to Theorem 3 of [5, p. 267].

Theorem 4.7. Let A be a locally C*-algebra with an m-base. A has a complete
set of irreducible representations provided there exist positive functionals f such that
M=N,, where M’s are maximal modular ideals in A.

PrOOF. As in Theorem 4.4, x—~T, is a "-representation of 4 on 4/N,. By [4,
Theorem 8.4, p. 36], A is semi-simple. Let 0#a<A. Let us choose a positive func-
tional fsuch that a¢ M. Define 7, (y+N;) = xy+ N,. Obviously x — T, is irreducible.
But the kernel of the homomorphism x — T, is contained in N,= M, therefore 7,0.
Hence the theorem is proved.

4*
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Lemma 4.8. Let A be a locally C*-algebra with an identity element e. Suppose
that A has bounded spectrum. Then |T,|*=v(x"x) for each x €A, where x—T, is a
representation of A.

PROOF. As in the proof of Theorem 4.4, we have f(x)=(7,(, (). where fc A*(J).
Now
J(x*x = (T, {) = fle) v(x* x),
from inequality (1) in the proof of Theorem 4.1. This implies
I17.Z1% = [IlI% v(x*x)
or :
T2 = v(x*x).

Now we state the following theorem about the direct sum of the *-representa-
tions. The construction of proof is similar to that in [7, pp. 197—198] and makes
use of Lemma 4.8.

Theorem 4.9. Let A be a locally C* -algebra with an identity element and bounded
spectrum. Then the direct sum of the ™ -representations is defined*

-
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