On the bases for laws of finite groups of small orders

By R. D. GIRI (Aligarh)

§ 1. Preliminaires

The finite basis problem, 'whether all the laws of a given group are derivable from a finite set', is found to hold in affirmative for considerably many cases. One of them is' every finite group has a finite basis for its laws (cf. [1], 52. 12).

In this note we work out the bases for laws of finite groups of small orders, namely ≤15. However, one can obtain even beyond 15 in the light of this note.*)

We shall denote by $Var(w_1, ..., w_r)$, the variety generated by the laws $w_1 = 1, ..., w_r = 1$. Rest of the notations are adopted from [1].

The key result of this section is the following:

Theorem 1.1. (12. 12. [1]). Every word w (the left hand side of the law w=1) is equivalent to a pair of words, one of the form x^m , $m \ge 0$ and the other a commutative word.

Corollary 1.2. \mathfrak{A}_n , an abelian variety of exponent n, has the basis for its laws x^n , [x, y].

The laws of all cyclic groups C_n ($1 \le n \le 15$), abelian groups of order 4 and 9, abelian groups of order 8 ($C_4 \times C_2$ and $C_2 \times C_2 \times C_2$) and abelian group of order 12 ($C_2 \times C_2 \times C_3$) are easily obtainable by corollary 1.2. Hence we only tabulate the non-abelian groups, namely, Q_8 , D_4 , D_3 , D_5 , D_6 , D_7 , A_4 and $M = \text{gp } \{x, y | x^3 = 1, y^4 = 1, x^y = x^{-1}, x^{y-1} = x^{-1}\}$.

§ 2. Variety generated by the given group

In this section we study what varieties are generated by the groups mentioned in Table 1.3.

Lemma 2.1. (54. 23, [1]). Var $Q_8 = \text{Var } D_4$.

*) DR. SHEILA MACDONALD has informed me (with the comments on my manuscript) that her student MR. RICHARD LEVINGSTON has been successful in enhancing my work till the order <32 in the light of my note and [3] p. 134. Any way I record Mr. Levingston's gratitude for drawing my attention to his work through his supervisor.

54 R. D. Giri

1	1.3.	Table	Non-abelian	groups

Order n	Nature	Presentations
1. $n = 8$	Q_8	gp $\{x, y x^4 = 1, y^2 = x^2, x^y = x^{-1}\}$
2. $n = 2m, 3 \le m \le 7$	D_m	$gp\{x, y x^m = 1, y^2 = 1, x^y = x^{-1}\}$
3. $n = 12$	A_4	$gp\{x, y x^2 = y^3 = (xy)^3 = 1\}$
4. $n = 12$	M	$gp\{x, y x^3 = 1, y^4 = 1, x^y = x^{-1}, x^{y-1} = x^{-1}\}$

Theorem 2.2. Var $D_4 = \mathfrak{A}_2^2 \wedge \mathfrak{R}_2$.

PROOF. D_4 is clearly metabelian group of exponent 4, i.e., $\operatorname{Var} D_4 \subseteq \mathfrak{A}_2^2$. Further we note that it is nilpotent of class 2, i.e., $[x_1, x_2, x_3]$ is a law in D_4 , hence $\operatorname{Var} D_4 \subseteq \mathfrak{N}_2$. Concludingly $\operatorname{Var} D_4 \subseteq \mathfrak{A}_2^2 \wedge \mathfrak{N}_2$. On the other hand if we consider a group $G \in \mathfrak{A}_2^2 \wedge \mathfrak{N}_2$ that generates the variety $\mathfrak{A}_2^2 \wedge \mathfrak{A}_2$, then $|G|^* = 8$, hence $G \in \operatorname{Var} D_4$, that is, $\mathfrak{A}_2^2 \wedge \mathfrak{A}_2 \subseteq \operatorname{Var} D_4$. Thus we have, $\operatorname{Var} D_4 = \mathfrak{A}_2^2 \wedge \mathfrak{A}_2$.

Remark: Var $D_4 \neq \mathfrak{A}_2^2$ as \mathfrak{A}_2^2 is not generated by any one of its finitely generated free groups in view of 16.36 of [1].

Theorem 2.3. Var $D_p = \mathfrak{A}_p \mathfrak{A}_2$ where p is an odd prime.

PROOF. By presentation of D_p ; $D_p \in \mathfrak{A}_p \cdot \mathfrak{A}_2$, hence $\operatorname{Var} D_p \subseteq \mathfrak{A}_p \mathfrak{A}_2$. Conversely consider any group G of order 2p in $\mathfrak{A}_p \mathfrak{A}_2$. Obviously this group G is non-abelian of order 2p hence isomorphic to D_p . Therefore $\mathfrak{A}_p \mathfrak{A}_2 \subseteq \operatorname{Var} D_p$. Hence the theorem.

Corollary 2.4. Var $D_3 = \mathfrak{A}_3 \cdot \mathfrak{A}_2 = \text{Var } D_6$.

PROOF. Allowing p=3 in theorem 2.3, we have $\operatorname{Var} D_3 = \mathfrak{A}_3 \mathfrak{A}_2$. But since $D_6 = D_3 \times C_2$ (cf. Problem 5.38 (iii) [2]) and C_2 is the subgroup of D_3 so $\operatorname{Var} D_6 = \operatorname{Var} D_3$.

Theorem 2.5. Var $A_4 = \mathfrak{A}_2 \mathfrak{A}_3$.

PROOF. Since $A_4 = (C_2 \times C_2)$ — by — C_3 , so $\operatorname{Var} A_4 \subseteq \mathfrak{A}_2 \cdot \mathfrak{A}_3$. In view of 24.64 and 15.61 of [1] $\mathfrak{A}_2 \mathfrak{A}_3$ is locally finite. So 51.41, [1]; guarantees that $\mathfrak{A}_2 \mathfrak{A}_3$ is generated by its critical groups. Clearly any critical group of $\mathfrak{A}_2 \mathfrak{A}_3$ is of order 12*). Now to choose G as D_6 is out of question because D_6 will not generate $\mathfrak{A}_2 \cdot \mathfrak{A}_3$. Also since M (cf. Table 1.3) is of exponent 12 so $G \not\cong M$. Thus $G \in \operatorname{Var} A_4$ or $\operatorname{Var} G = = \mathfrak{A}_2 \mathfrak{A}_3 \subseteq \operatorname{Var} A_4$. This completes the proof.

Theorem 2.6. Var $M = \mathfrak{A}_3 \cdot \mathfrak{A}_2 \vee \mathfrak{A}_4$.

*) Clearly $|G| = 2^{\alpha} \cdot 3^{\beta}$. As G is of exponent 6 the maximum value of β is 1. Now α can achieve value >1, as $\alpha = 1$ gives $G = D_3 \cong S_3$ which means $G \in \mathfrak{A}_2 \mathfrak{A}_3$. Further $\alpha > 2$ asserts G is of exponent 12 in view of 53.72 of [1]. Hence only possible value of α is 2 and |G| = 12.

^{*)} |G|=8 is trivial. Because G is evidently a 2-group and $|G|>2^2$. Thus either $|G|>2^3$ or $|G|\leq 2^3$. For the first case $|G|=2^{3+\alpha}$, $\alpha \geq 1$, without loss of generality let $\alpha=1$ so that $|G|=2^4$, hence G has a monolith factor D_4 so in view of 53.72 of [1] it has exponent 8 i.e., $G \notin \mathfrak{A}_2^2$, a contradiction. In second case |G| is exactly 8 as G is non-abelian and $|G|=2^2$ is impossible.

PROOF. Clearly $\mathfrak{A}_3\mathfrak{A}_2\vee\mathfrak{A}_4\subseteq \operatorname{Var} M$. On the other hand M is a split extension of C_3 —by— C_4 so in view of 24.62, [1], $\operatorname{Var} M$ is locally finite, as it is metabelian of exponent 12. Hence $\operatorname{Var} M$ is generated by its critical group G. Obviously G may have order 12, G and G and G may have order 4 and 6 only. G may have order 5 only G may have order 6 only G may have order 7 only G may have order 9 only G may have order 9 only G may have order 12, G may have order 12, G may have order 13. G may have order 14 and 6 only. G may have order 15 only G may have order 15 only G may have order 16 only G may have order 17 only G may have order 18 only G may have order 19 only G may have o

§ 3. The laws characterizing a group

In order to study the laws characterizing a group A we study the laws in Var A. In § 2 we have studied $\mathfrak{A}_2^2 \wedge \mathfrak{A}_2$, $\mathfrak{A}_p \mathfrak{A}_2$, $\mathfrak{A}_p \mathfrak{A}_q$ (for example $\mathfrak{A}_2 \mathfrak{A}_3$) where $q \neq 2$; p, q are distinct primes and $\mathfrak{A}_3 \mathfrak{A}_2 \vee \mathfrak{A}_4$. We study the laws of these varieties.

Theorem 3.1. $\mathfrak{A}_{2}^{2} \wedge \mathfrak{R}_{2} = \text{Var } \{x^{4}, [x^{2}, y]\}.$

PROOF: Clearly var $\{x^4, [x^2, y]\} \subseteq \mathfrak{A}_2^2 \wedge \mathfrak{R}_2$. But $\mathfrak{A}_2^2 \wedge \mathfrak{R}_2 = \text{var } \{(x^2y^2)^2, [x, y, z]\} = \text{var } \{x^4, [x, y]^2, [x^2, y^2], [x, y, z]\}$. So to establish the reverse inclusion it suffices to show that $[x, y, z] \Rightarrow [x^2, y]$. Clearly $[x^2, y] = x^{-1} \cdot [x, y] \cdot x \cdot [x, y]$ by 33.34 of [1]. Also $x^{-1} \cdot [x, y] \cdot x \cdot [x, y] = x^{-1} \cdot [x, y]^{-1} \cdot x \cdot [x, y]$; as commutators have order 2 in $\mathfrak{A}_2^2 \wedge \mathfrak{R}_2 = [x, [x, y]]$. So $[x, [x, y]] = [x^2, y]$. But $[x, y, z] \Rightarrow [x, [x, y]]$. Hence $[x, y, z] \Rightarrow [x^2, y]$, concluding $\mathfrak{A}_2^2 \wedge \mathfrak{R}_2 \subseteq \text{var } \{x^4, [x^2, y]\}$.

Theorem 3.2. $\mathfrak{A}_p \cdot \mathfrak{A}_2 = \text{var } \{x^{2p}, [x^2, y^2]\}.$

PROOF. The sets for laws of \mathfrak{A}_p and \mathfrak{A}_2 are $U = \{x^p, [x, y]\}$ and $V = \{x^2, [x, y]\}$ respectively. But as $x^2 \Rightarrow [x, y]$ so $V = \{x^2\}$. In view of 21.12 of [1] the basis for laws of $\mathfrak{A}_p \mathfrak{A}_2$ is $U(V) = \{x^{2p}, [x^2, y^2]\}$.

Theorem 3.3. $\mathfrak{A}_p \cdot \mathfrak{A}_q = \text{Var } \{x^{pq}, [x, y]^p, [x^q, y^q]\} \text{ where } p, q \text{ are distinct primes, } q \neq 2.$

PROOF. The sets for laws of \mathfrak{A}_p and \mathfrak{A}_q are $U = \{x^p, [x, y]\}$ and $V = \{x^q, [x, y]\}$ respectively. So laws of $\mathfrak{A}_p \mathfrak{A}_q$ are given by the set

$$U(V) = \{x^{pq}, [x^q, y^q], [x, y]^p, [[x, y], [z, w]]\}.$$

But [[x, y], [z, w]] is implied by $[x^2, y^2]$ indicating that q would be 2, a contradiction. Thus $U(V) = \{x^{pq}, [x^q, y^q], [x, y]^p\}$ is the required basis for laws, proving the theorem.

Theorem 3.4. $\mathfrak{A}_3 \cdot \mathfrak{A}_2 \vee \mathfrak{A}_4 = \text{Var } \{x^{12}, [x, y]^3, [x^2, y^2], [x^6, y] \}.$

PROOF. In view of 15.83 it is immediate by inspection.

§ 4. Bases for the laws

Groups of order 1 are all isomorphic to the trivial group for which the basis for laws is x. For all abelian groups (cyclic or non-cyclic) of order n the basis for laws is $\{x^n, [x, y]\}$. We tabulate here the laws of different non-abelian groups of order ≤ 15 .

S. No	Group	Order		Basis for laws			
1	D_3	6	x^6 ,	$[x^2, y^2]$			
2	D_6	12	x^6 ,	$[x^2, y^2]$			
3	D_4, Q_8	8	x^4 ,	$[x^2, y]$			
4	D_5	10	x^{10} ,	$[x^2, y^2]$			
5	D_7	14	x^{14} ,	$[x^2, y^2]$			
6	A_4	12	x^6 ,	$[x^3, y^3],$	$[x, y]^2$		
7	M	12		$[x, y]^3$,		$[x^6, y]$	

ACKNOWLEDGEMENT

I owe to Dr. R. M. BRYANT (Canberra) who pointed me out this problem. Next, I thank Dr. Sheila MacDonald (Brisbane) for making some useful comments on my original manuscript. Also, I am thankful to Prof. M. A. KAZIM (Aligarh) for encouragement.

References

- [1] H. NEUMANN, Varieties of Groups, New York, 1967.
- [2] BAUMSLAG and CHANDER, Group theory, New York, 1968.
 [3] H. S. M. COXETER and W. O. J. Moser, Generators and relations for discrete groups, Berlin,

(Received August 15, 1972.)