On the absolute Riesz summability of Fourier series

By ABRAR AHMAD KHAN (Aligarh)

The object of this paper is to generalize a recent Theorem of PREM CHANDRA on absolute Riesz summability of Fourier series. It has also been shown that one of his conditions is redundant.

1. Let $\sum_{n=0}^{\infty} a_n$ pe a given infinite series with the sequence of partial sums $\{S_n\}$ and let $\{\lambda_n\}$ be an increasing sequence of positive numbers tending to infinity with n and

$$\lambda_{n} = \mu_{0} + \mu_{1} + \mu_{2} + \dots + \mu_{n},$$

$$t_{n} = \frac{1}{\lambda_{n}} \sum_{v=0}^{n} \mu_{v} S_{v}.$$

A series $\sum_{n=0}^{\infty} a_n$ is said to be *summable* $|R, \lambda_n, 1|$ if*) $t_n \in BV$ and write $\sum_{n=0}^{\infty} a_n \in |R, \lambda_n, 1|$.

Let f(t) be L-integrable in $(-\pi, \pi)$ with period 2π . Without any loss of generality the constant term of the Fourier series of f(t) can be taken to be zero, so that

 $\int_{-\pi}^{\pi} f(t) dt = 0,$

and

$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t).$$

We shall use the following notations:

$$\Phi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) \},$$

$$\Lambda(t) = \frac{1}{t} \int_0^t u \, d\Phi(u),$$

$$K(n,t) = \sum_{t=0}^n \frac{\lambda_t}{t+1} \sin vt.$$

*) $t_n \in BV$ means $\sum |t_n - t_{n-1}| < \infty$.

62 A. A. Khan

2. Recently PREM CHANDRA [1] has proved the following theorem.

Theorem A. Let for $0 < \alpha < 1$, the strictly increasing sequences $\{\lambda_n\}$ and $\{g(n)\}$, of nonnegative terms, tending to infinity with n, satisfy the following conditions:

(2.1)
$$\log(\Pi/t) = O\{g(k/t)\}; \quad as \quad t \to 0,$$

$$(2.2) {\lambda_n/(n+1)} \uparrow with \quad n \ge n_0,$$

$$(2.3) n^{1-\alpha} \Delta \lambda_n = O\{\lambda_{n+1}\}, as n \to \infty,$$

(2.4)
$$\begin{cases} (i) & \{x/g(x)\} \uparrow \quad with \quad x, \\ (ii) & x \frac{d}{dx} \left(\frac{1}{g(k/x)}\right) \uparrow \quad with \quad x, \\ (iii) & \frac{d}{dx} \left(\frac{1}{g(k/x)}\right) \downarrow \quad with \quad x, \end{cases}$$

(2.5)
$$\begin{cases} (i) & \left[\frac{d}{dt}\left(\frac{1}{g(k/t)}\right)\right]_{t=1/n} = O\left\{n/g(n)\right\}, \\ (ii) & \sum_{n=1}^{\infty} \left(ng(n)\right)^{-1} < \infty. \end{cases}$$

Then, if $\Phi(t) \in BV(0, \pi)$ and $\Lambda(t)g(k/t) \in BV(0, \pi)$, the series

$$\sum_{n=1}^{\infty} A_n(x) \in |R, \lambda_n, 1|,$$

where k is a suitable positive constant such that g(k/t)>0 for t>0.

3. The object of this note is to generalize the above theorem. In what follows we prove the following:

Theorem. Let, for $0 < \alpha < 1$, the strictly increasing sequences $\{\lambda_n\}$ and $\{g(n)\}$, of nonnegative terms, tending to infinity with n, satisfy the following conditions:

(3.1)
$$\log(\pi/t) = O\{g(k/t)\}, \quad as \quad t \to 0,$$

$$(3.2) \{\lambda_n/n^{\delta}\} \uparrow, \quad n \geq n_0, \quad 0 < \alpha < \delta < 1,$$

(3.3)
$$n^{1-\alpha}\Delta\lambda_n = O\{\lambda_{n+1}\}, \quad as \quad n\to\infty,$$

(3.4)
$$\begin{cases} (i) & \{x^{\beta}/g(x)\} \uparrow & with \quad x, \beta \ge 1, \\ (ii) & \frac{d}{dx} \left(\frac{1}{g(k/x)}\right) \downarrow & with \quad x, \end{cases}$$

(3.5)
$$\begin{cases} (i) & \left[\frac{d}{dt} \frac{1}{g(k/t)} \right]_{t=1/n} = O(n/g(n)), \\ (ii) & \sum_{n=1}^{\infty} \frac{n^{\beta-2}}{g(n)} < \infty. \end{cases}$$

Then, if $\Phi(t) \in BV(0, \pi)$ and $\Lambda(t)g(k/t) \in BV(0, \pi)$, the series

$$\sum_{n=1}^{\infty} A_n(x) \in |R, \lambda_n, 1|,$$

where k is a suitable positive constant such that g(k|t) > 0 for t > 0.

Remarks:

I. Condition $(2.2)\Rightarrow(3.2)$ but the converse is not true. Thus (3.2) is a lighter condition.

II. For $\beta = 1$ we get a result which is a generalization of Theorem A.

III. Condition (2.4)(ii) of PREM CHANDRA is redundant. For he employs this condition in the proof of

(3.6)
$$\int_0^t \sin(n+1) u \frac{d}{du} \left(\frac{1}{g(k/u)} \right) du = O\left\{ \frac{1}{g(n+1)} \right\}$$

which can be proved in the following manner without the use of the above condition.

PROOF of (3.6): Case I: $(n+1)^{-1} \le t$.

$$\int_{0}^{t} \sin((n+1)u) \frac{d}{du} \left(\frac{1}{g(k/u)} \right) du = \left(\int_{0}^{(n+1)^{-1}} + \int_{(n+1)^{-1}}^{t} \right) \sin((n+1)u) \frac{d}{du} \frac{1}{g(k/u)} du =$$

$$= I_{1} + I_{2}, \text{ say.}$$

Since $|\sin(n+1)u| \le (n+1)u$,

$$I_{1} \leq (n+1) \int_{0}^{(n+1)^{-1}} u \frac{d}{du} \left(\frac{1}{g(k/u)} \right) du \leq$$

$$\leq \int_{0}^{(n+1)^{-1}} \frac{d}{du} \left(\frac{1}{g(k/u)} \right) du = \left[\frac{1}{g(k/u)} \right]_{0}^{(n+1)^{-1}} = \frac{1}{g(k(n+1))} = O\left(\frac{1}{g(n+1)} \right).$$

And, by virtue of second mean value theorem and the conditions (3.4) (ii), (3.5) (i), we have

$$I_2 = \left\{ \frac{d}{du} \left(\frac{1}{g(k/u)} \right) \right\}_{u = (n+1)^{-1} (n+1)^{-1}} \sin(n+1)u \, du = O\left\{ \frac{1}{g(n+1)} \right\},$$

$$(n+1)^{-1} < \xi < t.$$

Case II: $(n+1)^{-1} > t$. In this case we write,

$$\int_{0}^{t} \sin((n+1)u) \frac{d}{du} \left(\frac{1}{g(k/u)} \right) du = \left(\int_{0}^{(n+1)^{-1}} - \int_{t}^{(n+1)^{-1}} \right) \sin((n+1)u) \left(\frac{d}{du} \frac{1}{g(k/u)} \right) du = I_{1} - I'_{2}, \text{ say.}$$

Proceeding as in the case of I_1 it can be easily shown that

$$I_2' = O\left(\frac{1}{g(n+1)}\right).$$

This completes the proof of (3.6).

4. For the proof of our theorem we require the following lemmas:

Lemma 1. If $\{\lambda_n/n^{\delta}\}\uparrow$, $n \ge n_0$, $0 < \delta < 1$, then

$$K(n, t) = O\left\{\frac{\lambda_n t^{-\delta}}{n^{\delta}}\right\},\,$$

uniformly in $0 < t \le \pi$.

PROOF. By virtue of hypothesis and Abel's Lemma

$$K(n, t) \leq \frac{\lambda_n}{n^{\delta}} \operatorname{Max} \left| \sum_{v \geq n_0} \frac{\sin vt}{(v+1)^{1-\delta}} \right| + O(1).$$

But

$$\sum_{v=n_0}^{m} \frac{\sin vt}{(v+1)^{1-\delta}} = \sum_{v=n_0}^{\lfloor 1/t \rfloor} \frac{\sin vt}{(v+1)^{1-\delta}} + \sum_{\lfloor 1/t \rfloor+1}^{m} \frac{\sin vt}{(v+1)^{1-\delta}} = L_1 + L_2.$$

$$L_1 = \sum_{v=n_0}^{\lceil 1/t \rceil} \frac{(v+1)^{\delta} \sin vt}{(v+1)} \le \left(1 + \left[\frac{1}{t}\right]\right)^{\delta} \operatorname{Max} \left| \sum_{v>n_0} \frac{\sin vt}{(v+1)} \right| = O(t^{-\delta}),$$

uniformly in $0 < t \le \pi$.

$$L_2 = \sum_{v=[1/t]+1}^{m} \frac{\sin vt}{(v+1)^{1-\delta}} \le t^{1-\delta} \max |\sum_{v \ge [1/t]} \sin vt| = O(t^{-\delta}),$$

uniformly in $0 < t \le \pi$. Hence

$$K(n, t) = O\left(\frac{\lambda_n t^{-\delta}}{n^{\delta}}\right).$$

Lemma 2. If for $\beta \ge 1$, $\{x^{\beta}/g(x)\}$ with x and $g(x) \uparrow \infty$, $x \to \infty$, then

$$\int_{0}^{t} \frac{\sin (n+1)u}{ug(k/u)} du = O\{n^{\beta-1}/g(n+1)\},\,$$

uniformly in $0 < t \le \pi$.

PROOF. Case I: $(n+1)^{-1} \le t$

$$\int_{0}^{t} \frac{\sin((n+1)u)}{ug(k/u)} du = \left(\int_{0}^{(n+1)^{-1}} + \int_{(n+1)^{-1}}^{t} \right) \frac{\sin((n+1)u)}{ug(k/u)} du.$$

$$= M_{1} + M_{2}, \text{ say.}$$

Now as shown by Prem Chandra [1, p. 337]

$$M_1 = O\left\{\frac{1}{g(n+1)}\right\}, \quad n \to \infty.$$

And, by virtue of the first hypothesis

$$M_{2} = \int_{(n+1)^{-1}}^{t} \frac{(k/u)^{\beta}}{g(k/u)} \frac{\sin((n+1)u)}{k^{\beta}u^{1-\beta}} du = \frac{(n+1)^{\beta}}{g(k(n+1))} \int_{(n+1)^{-1}}^{\xi} u^{\beta-1} \sin((n+1)u) du = \frac{1}{(n+1)^{\beta}} du = \frac{(n+1)^{\beta}}{g(k(n+1))} \int_{\eta}^{\xi} \sin((n+1)u) du = \frac{(n+1)^{\beta}}{g(k(n+1))} \xi^{\beta-1} \int_{\eta}^{\xi} \sin((n+1)u) du = \frac{(n$$

uniformly in $0 < t \le \pi$. Case II: $(n+1)^{-1} > t$.

$$\int_{0}^{t} \frac{\sin((n+1)u)}{ug(k/u)} du = \left(\int_{0}^{(n+1)^{-1}} - \int_{t}^{(n+1)^{-1}}\right) \frac{\sin((n+1)u)}{ug(k/u)} du = M_{1} - M_{2}'.$$

Now

$$M_2' = \int_{1}^{(n+1)^{-1}} \frac{\sin(n+1)u}{ug(k/u)} du \le (n+1) \int_{1}^{(n+1)^{-1}} \frac{du}{g(k/u)} = O\left(\frac{1}{g(n+1)}\right),$$

uniformly in $0 < t \le \pi$.

This completes the proof of Lemma 2.

PROOF OF THEOREM 5. Following Prem Chandra [1] we have

$$A_n(x) = \frac{2}{\pi} \int_0^{\pi} \Lambda(t) g(k/t) \frac{t}{g(k/t)} \frac{d}{dt} \left(\frac{\sin nt}{nt} \right) dt$$

and the series $\sum_{n=1}^{\infty} A_n(x) \in [R, \lambda_n, 1]$, if

$$\sum = \sum_{n=0}^{\infty} \left| \frac{\Delta \lambda_n}{\lambda_n \lambda_{n+1}} \sum_{v=0}^{n} \frac{\lambda_v}{(v+1)} \int_0^t \frac{u}{g(k/u)} \frac{d}{du} \left(\frac{\sin(v+1)u}{u} \right) du \right| = O(1),$$

uniformly in $0 < t \le \pi$.

Now, integrating by parts we have

$$\int_0^t \frac{u}{g(k/u)} \frac{d}{du} \left(\frac{\sin(v+1)u}{u} \right) du = \frac{\sin(v+1)t}{g(k/t)} - \int_0^t \frac{\sin(v+1)u}{ug(k/u)} du - \int_0^t \sin(v+1)u \frac{d}{du} \left(\frac{1}{g(k/u)} \right) du.$$

Therefore,

$$\sum \leq \frac{1}{g(k/t)} \sum_{n=0}^{\infty} \left| \frac{\Delta \lambda_n}{\lambda_n \lambda_{n+1}} K(n,t) \right| + \sum_{n=0}^{\infty} \left| \frac{\Delta \lambda_n}{\lambda_n \lambda_{n+1}} \sum_{v=0}^{n} \frac{\lambda_v}{v+1} \int_0^t \frac{\sin(v+1)u}{ug(k/u)} du \right| +$$

$$+ \sum_{n=0}^{\infty} \left| \frac{\Delta \lambda_n}{\lambda_n \lambda_{n+1}} \sum_{v=0}^{n} \frac{\lambda_v}{(v+1)} \int_0^t \sin(v+1)u \frac{d}{du} \left(\frac{1}{g(k/u)} \right) du \right| = \sum_{1}^{\infty} + \sum_{2}^{\infty} + \sum_{3}^{\infty}, \text{ say.}$$

Now, we write, for $T = \left[t^{-\frac{\delta}{\delta - \alpha}}\right]$

$$\sum_{1} = \sum_{n=0}^{T-1} + \sum_{n=T}^{\infty} = \sum_{1,1} + \sum_{1,2}$$
, say.

As shown by Prem Chandra [1, p. 339], we have

$$\sum_{1,1} = O(1),$$

uniformly in $0 < t \le \pi$.

Now, using Lemma 1, we have

$$\sum_{1,2} = \frac{1}{g(k/t)} \sum_{n=T}^{\infty} \left| \frac{\Delta \lambda_n}{\lambda_n \lambda_{n+1}} K(n,t) \right| = O\left\{ \frac{1}{g(k/t)} \sum_{n=T}^{\infty} \frac{|\Delta \lambda_n|}{\lambda_n \lambda_{n+1}} \cdot \frac{\lambda_n t^{-\delta}}{n^{\delta}} \right\} = O\left\{ \frac{1}{g(k/t)} \sum_{n=T}^{\infty} \frac{\lambda_{n+1}}{n^{1-\alpha}} \cdot \frac{t^{-\delta}}{\lambda_{n+1} n^{\delta}} \right\} = O\left\{ \frac{t^{-\delta}}{g(k/t)} \sum_{n=T}^{\infty} \frac{1}{n^{1+\delta-\alpha}} \right\} = O(1),$$

uniformly in $0 < t \le \pi$. And, by virtue of Lemma 2 and (3.5) (ii)

$$\begin{split} \sum_{2} &= O\left\{\sum_{n=0}^{\infty} \frac{|\Delta \lambda_{n}|}{\lambda_{n} \lambda_{n+1}} \sum_{v=0}^{n} \lambda_{v} \cdot \frac{(v+1)^{\beta-2}}{g(v+1)}\right\} = \\ &= O\left\{\sum_{v=0}^{\infty} \frac{\lambda_{v} (v+1)^{\beta-2}}{g(v+1)} \sum_{n=v}^{\infty} \left(\frac{1}{\lambda_{n}} - \frac{1}{\lambda_{n+1}}\right)\right\} = O\left\{\sum_{v=0}^{\infty} \frac{(v+1)^{\beta-2}}{g(v+1)}\right\} = O(1), \end{split}$$

uniformly in $0 < t \le \pi$. Also, by using (3.6), we have $\sum_{3} = O(1)$, uniformly in $0 < t \le \pi$.

This completes the proof of the theorem.

I wish to thank Dr. S. M. MAZHAR for his valuable suggestions and guidance which I received from him during the preparation of this paper.

References

[1] P. CHANDRA, Absolute summability by Riesz means, Pacific J. Math. 34 (1970), 335-341.

A. M. U., Aligarh, India (Received September 12, 1972.)