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Introduction

Let
xl""’xnl! yl""’J’H

be pairwise different real numbers. If the same real numbers rearranged in increasing
order yield

By S Wy o e Barka

with x,=z, , then we say that with respect to this ordering rank x,=r,.
Let R,, ., denote the vector space of (m+n)-dimensions and let ry, ..., r,, be
one of the variations without repetition of the elements 1, ..., m+n. Let moreover

Wy — {{xlo cees xm+n)€Rm+n1xj 7= Xk if j = k;

and rankx; = r, k=1, ...;m

Finally, let &,, ..., ¢, and n,, ..., n, be samples corresponding to ¢ and » re-
spectively, where ¢ and » are independent random variables with a common, con-
tinuous distribution function.

In the theory of ordered samples, a fundamental role is played the following
theorem ([6], 363. Satz 10):

P((ﬁla Lid | ém)ewfl.n-»?m) I

= n+1)...(n+m)

Let

Ay - Aumsn

aﬂtl e a!!ﬂ!l-l-li

be a matrix of real elements, then on the basis of the statistics

ém.n = a1r1+ tee +amrm, if (cls tesy CM)Gwﬂ,...,r

defined with the help of this matrix, we can — by virtue of the theorem just quoted —
decide whether to adopt or to reject the hypothesis

Hy:P((<x) = P(n < x).
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If a;=j (j=1,...,m+n), we get the well-known Wilcoxon-statistics.

The aim of the present paper is to investigate the asymptotic behavior of the
so called linear orderstatistics ([4], 57), first for # - < and then for m — .

In Chapter 1. we obtain a theorem for the characteristic function of linear
order statistics, and on the basis of this theorem, of fundamental importance for
the whole paper, we obtain sufficient and, then necessary and sufficient conditions
for a linear order statistics to have on asymptotic distribution. Also we give necessary
and sufficient conditions for a simple linear order statistics to have an asymptotically
normal distribution.

In Chapter 2., building on GABOR SzEG(O's result concerning the eigenvalues
of Toeplitz- and Hankel-matrices belonging to a given function, we investigate
distributions representable as limits in the weak sense of discrete uniform dis-
tributions.

Making use of the results of Chapter 2. we give in Chapter 3. a method for
«constructing linear order statistics with given asymptotics.

In the whole paper, a fundamental role is played by the convergence in the
weak sense of random variables. For different definitions of this notion see [1],
37—38, 58. As in [1], weak convergence will be denoted by =.

1. On the characteristic function of linear order statistics
1.1. Let the matrices with real elements

afy ... alY
(]) A, = aé‘l"“‘ag} (v= 12, 4:.)

be given. Let us define the random variable 5§ (=1, 2, ...) on the matrix A4, as
follows:

If oy, ..., 2, (1=s=v) are pairwise different natural numbers and k; (j=1, ..., 5)
are arbitrary different numbers from the numbers 1, ..., v, then

1
viv—=1)...(v—=s+1)°

) it ) V)Y
P(qa: "_'azr)k;!'“’ \.'l:)—-a:v ,)"'

-

From this definition we infer that n}" is a uniformly distributed discrete random
variable, namely

1
(2) P =a)=—  (k=1,...,").

Definition 1.1. By the linear order statistics generated by the random variables
nimEm - onlmtY e mean the random variable

&) Smie = M ST,

n being a non-negative integer.
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Definition 1.2. By the linear order statistics generated by the matrices (1) we mean
the ensemble of the random variables

fm_n (m= ],2, sasy n:O, 1,2, ...).

Definition 1.3. The linear order statistics generated by the matrices (1) are asym-
ptotic, if for any natural number m there exists a random variable ¢,, such that

Cm,n - g'm' i oo,

Definition 4.1. The linear order statistics generated by the matrices (1) are doubly
asymptotic, if there exists a random variable ¢ such that

im,n:’&:s ‘_f n—-co, M —+ o,

We are going also to speak about asymptotically ¢, distributed (m=1, 2, ...),
and about doubly asymptotically ¢ distributed linear order statistics respectively.

Clearly, the asymptotic order statistics generated by the matrices (1) are doubly
asymptotically ¢ distributed, if and only if ,,=¢&, m — =,

Let us denote by IT\", the set of variation of order m without repetition that
can be formed from the elements |, ..., m+n. Then, on the basis of Definition 1.1.

: 5’ RN | AR [ o

P ’mn= a) =
(C ’ ) [ll+|}...(m+n) ‘1:..“.: i tm+n}

=a

1.2. Let us put, for of sake brevity, m+n = v. We propose to determine the
expectation and the variance of ¢, ,. In order to be able to do this, we first consider
the expectation and the variance of the random variables »;" (j=1.2,...). Let us
prove the following

Theorem 1.1. The random variables nj" (j=1,2, ...) are asymptotically uncor-
related. Moreover
Dl

m
S D2(nim+m)
=1

_..[‘ n — co,

Proor. Let us denote the vector formed from the elements of the j-th row of
the matrix 4, by ¥, and let e be the vector of v-th order having all its elements
equal to 1. ‘1[ ;2 is the inner product of 2 ; and A, ;e that of A ; and e, and A that
of A, by itself Making use of these notauons, we get

1
@ Ef = (W),

&) D*(nf”) = —W——M)”
Since for j=k

E(q}')f]‘é') = Z‘ “Ju)“{? P(?]'j')) — a};j, qiv) = ﬂi}’) ey

@) (e) — 9,90,
o, f=1 ( )

7 D



98 - B. Gyires

we get
|
E[(nf?—EMmP) (i —EMmM)] = 1) =7 (W) (Ure) - S0 A A, ;
thus the correlation coefficient of 7§ and q,ﬁ"’ is
1 A e) (U e) —v(A; A
Q(ﬂ}v), ’?k(v)) ;. 1 ( 2! )( k ) (2 i k) x
e V["Qlj — (W;e)’][vAU; — (Wre)’]
Let the random variables #; and 5, be defined by the formulae
1
P(yy=afy) = P = a) = 3
P(nj E a}:)s M= (')) — _553 ('LB =1, eses ¥
where d,; is the Kronecker symbol. Then
1 1 1
E(my) = = We), D*(my) = 5 Aj "F(‘Hje)z,
1
E(miny) = 7‘2[1&[;9
and thus, if we still write o(n;, 1) = —0;, the equality
1
Q('f{‘” M) = y—1 Qjk -
results. Since |g;|=1, according to the first part of our statement
o, ") = 0, v - oo,
On the basis of (2) and of (3)
_I_ m
E(fm.rr) = T ZQ[fe
j=1
and
D* () = 2 D’(ﬂ}“)+1§ e (", n¢”) D (n}”) D(mi”)-
In view of
D (v) D (v)
J,; Qjk ('U ) D(n") o Z’D(" v))D(q v))
g‘ D*(n§») e ,Z, D*(nj*)
and of
D) Dm”) _ D)D)  _  Daf)Dm”) 1

3 ) D)+ D) ~ 2y D) 2
=1
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we obtain
DGud | oL mm—1)
2;92(!1}")) v—1 2

and from this we infer the second part of our statement.

1.3. Let the matrix with complex elements

Zn o Zim4n
ZzZ =

zml e zmm'+n

be gwen Denote by Z§* the matrix of m rows and B, columns, each column of
which is equal to the k-th column of the matrix Z. Denote by (Z}Y ... Zf"*™) the
matrix of m rows and B;+...+pf,+, columns, obtained by wrmng the matrices
Z},‘l), , Z§"*™ one after the other. If f,=0, then the k-th column of the matrix Z
is missing from the matrix (ZY... Z"*™). Let

1
G n(Z Per (Z ... Z{+m),
.l'l( ) (ﬁ+]) (n+m) ﬂ L2 ‘l%:.”,""' el'( B1 §m+n)
ﬂ]_"' +’m+u-m

where Per denotes the permanent of the matrix following it. In the sequel, a funda-
mental role will be played by the following

Lemma. If

(6) |zp] =1 = uems k® L PN,

then uniformly in z;

0 II G+ - + Zmea)

Jj=1 =
G a(Z)— S L - 0, n— oo R =13 5.

PrROOF. Let S be the matrix with m+n rows and m columns having all its
elements equal to 1 then, by virtue of the Cauchy—Binet expansion theorem ([5],
579), we have

®)

where

Hm, n(Z)

1
(n41)...(n+m)m

Per (ZS) m’n (Z)+Hm,n(z):

Per (Z§V...Z{*+W),

i e AT
(n+1)...(n+m) 3!+ +gm,.-m B! ﬁm+n!
1.t m.,_,,:-m
By condition (6)
|Per (Z§P ... Z{*+9)| = m

m+n

T
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and so

1 m —
@) = D = @+ D). () =

m
[+2]
. 1.

() (5]

Per(ZS) = m! [ G+ - +Zmen),
j=1

|Hom,n

Taking now into account that

we get on the basis of (8) the limit (7), as stated.

We now prove the following
Theorem 1.2. If the random variables &,, , and n{" have characteristic functions
P, (1) and qoj"’ (2) respectively, then uniformly in t€ R,

(n+m)™
(n+1)...(n+m)

[Q’m.u(‘)_ ';0{')(‘)---(192)(0] -0, n=o (Mm=12..).

PrOOF. By the definition of characteristic functions, the function ¢, ,(¢) can
be obtained by substituting z=¢" into the expression

1

Z z‘g:+"'+n5‘:’k}m e
(+1)...(r+m) i Sengm

1 2% z"i':-)u

= : Per
(n+1)...(n+m) 1=t1-=;=z,,,-.n

2 . %

One easily sees that this expression is equal to the function G,, ,(Z) occuring in our
lemma, if here
P L

o Fa B .
z";‘:kjl z‘s:uj,“
On the other hand

1 v v

o) = — [+ ... +22%], z=em

Since |(e")‘5:’|= 1, on applying our lemma, we obtain the statement of our theorem.
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From Theorem 1.2. we directly infer the following theorems:
Theorem 1.3. The linear order statistics generated by the matrices (1) are asymp-
totic if and only if, the limit
o=@ ... "™ (), n+o, tER, (M=12,...)

exists and is continuous at zero.
Theorem 1.4. The Mnear order statistics generated by the matrices (1) are doubly
asymptotic if and only if
PN (t)... M (1), n—> o0, M-, tER,

exists and is continuous at zero.

Let &, be the set of the uniformly distributed discrete random variables and
if n” €&, the index v denote that the probability belonging to n is 1/v. Let &,
be the set of those random variables n which can be represented in the form

N =n v-=-o, nMeé
Theorem 1.5. If n;€é6, (j=1,2,...), ie. if

'bv) -y Voo, "}"E‘gx,

then the linear order statistics generated by the matrices (1) determined by the points
of discontinuity of the random variables n{” (v=1, 2, ...; j=1, 2, ...), are asymptotically
equal to the sums of the random variables 1, ..., n,, (m=1, 2, ...) independent from
each other.

Proor. Denote by ¢{” () and by ¢ ;(2) the characteristic function of #{* and of
n; respectively. Since

o) ... ()= 91(2) ... @(t), n—= o, tER,

and ¢,(7)...¢,(7) is the characteristic function of the sum #,+...+n,, of the in-
dependent random variables n,, ...s N, the validity of our statement follows from
theorem 1.3.

This theorem implies
Theorem 1.6. If n;€6, (j ="1,2, ...) ie.
qj') =~ qj) W= ok, '1}') EJI!

then the linear order statistics generated by the matrices (1) determined by the points
of discontinuity of the random variables n{"” (v=1,2,...;j=1,2,...) are doubly
asymptotically of distribution n if and only if

©) Bk et Vi
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1.4. In what follows, as an application of theorem 1.4. we are going to consider
simple linear order statistics in the special case when

o, 20 ... VO,

(10) 4,= |oy 20f.v| (=12..)

where o, %,, ... are different nonzero real numbers.
Accordingly, in this case the random variable ¢, , satf@fies

1
P(fm,n - a1k1+ +amkm) == (ﬂ+l)'..(ﬂ+fﬂ) (kh —A-,km)'EH.‘:T-’m

and on the basis of (4) and of (5)

1
) = S @+ . + %),

(11) D6, w) = %l-[v(rx§+...+oc§,)—-(oc1+...+a,,,)2].

Let us prove the following

Theorem 1.7.
Emn = E(Em,0) ] 1 Fx
12 P['——' = X| » — e?dy
( ) D(ém,n) "2’1: -!: ¥
n=>oco, n—co

if and only if the real numbers a,, a,, ... satisfy the condition

oA+...+od

-0, m— co.
(G + ... +a2)? f

(13)

With the help of definition 1.4., this theorem can also be formulated as fol-
lows:

Theorem 1.8. The standardized linear order statistics generated by the matrices
(10) are doubly asymptotically normally distributed if and only if (13) is satisfied.

Proor. If the characteristic function

eia}.r etzjvr_l
v e%t—1

: 1 <«
(p}‘)(l‘) — 7% em}kt —

of the random variable #{* we use the notations

p=EGuns 0= DGnn). S =27,
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then a short calculation yields
q,m [ ‘] = e"‘J("“)—" [ "N 29 ]

o
5[2

S(x) = l—%z-i—o(x‘)

Making use of

and replacing ¢ by the value (11), we obtain

I
oy
o; \’— g N> oo
[ ] o:1+ +ot,,, (fx1+ +a§,)2]
and
SIS <1 a
20 , ’

Denoting the characteristic function of the random variables &, , again by

@m.n(1), We get
s n th _in
oL a(0) = E e I 4 [%]

va_,- ]
lim ¢ ,(#) = lim J] [ .

n=>co g n—-eo j [ ]
%3
20

]=I1 ol +a3.2 [(a1+ +a3:)*]]

In order to investigate the passage to the limit m — - we take logarithms on
both sides:

and consequently

£ t’ a‘+ + Oty
o)« el

n—~oco

whence
:2

(p:'“(t) - e_T, n—+ oo, M-—+>eoce

if and only if condition (13) is satisfied. Then, the simple linear order statistics
generated by the matrices (10) is — by virtue of theorem 1.4. — in fact asymptotically
normally distributed.

As it is known,

of 4 ...+
(o + ... +o3h)?

=

&£
m
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and here equality holds only if o =... =2},. Therefore and on the basis of theorem 1.7.
we have the following

Corollary 1.1. If oj=0o* (j=1,2,...) then (12) holds, and it has the greatest
rapidity of convergence among the simple linear order statistics defined by the ma-
trices (10).

In case of the well-known Wilcoxon-test o;=1 (j=1, 2, ...); consequently, on
the basis of corollary 1.1. — as it is well-known — the Wilcoxon distribution is
doubly asymptotically normal and belongs to those simple linear order statistics
defined by the matrices (10) for which the speed of convergence to the normal dis-
tribution is the greatest.

The case

o =k k=12..)

is also of some interest. Indeed, in this case we wish to find, for natural numbers a
satisfying

Im+2m—-1)+..+mlsa=1n+1)+..+mn+m)
the number of solutions of the Diophantine equation

114 oo +mxy = @, (X1 o005 XD € JTE2s-
Since in this case

od+...+ab
(a5 + ... +o2)°

3m(m+1)—1

mm+DemID > M

...
s

according to the theorem 1.7. the number of solutions shows a doubly asymptotic
normal distribution.

2. On distributions representable as limits in the weak sense
of discrete uniform distributions

2.1. By theorem 1.5. the construction of asymptotic linear order statistics and
the construction of random variables £ €&, are equivalent problems. It is this problem
that we are going to consider in the present chapter by giving a method for the
representation of random variables belonging to the set &,.

Definition 2.1. A Hermite-symmetrical matrix-valued function of order p defined
on the interval | —mn, n] is said to be ¥-integrable, if each of its elements is L-integ-
rable. By the integral of this we understand the matrix formed from the integral of its
elements.

Let the set of Z-integrable matrix-valued functions of order p be denoted
by %,.
With the help of the Fourier transform

o(1) = 2—; [ €= f(x)ax
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of the matrix-valued function f(x) €%, we form the Hermite-symmetrical Toeplitz-
matrix

?©) o(=1) ...e(—n)

(1) 0 ..¢(=n+1)

T,(f) = n=0,1,2..)

o(n) om—1)...0(0)
of order (n+ 1)p, and we denote the eigenvalues of this matrix by
(14) A (k=1,2,..,(n+1)p).
Let the eigenvalues of f(x) €%, be
Mx) = A(x) =...34,(x)

when these are also Z-integrable. Let [m, M] be the shortest intervall containing
the range of the functions 4,(x) (k=1, ..., p). The values m = —~ and M= are
also permitted.

Generalizing a theorem of G. SzeGO, the author has show ([3], 172, Satz 1.) that

M EmM] (k=1,...(a+Dp; n=0,1,...)
and if F(4) is a continuous function defined on the intervall [m, M], then

1 ®+Dp 1 -
(15) n_"H g F().E"))—" E‘_‘{ [F(Al(x))+.+F(i,(x))]dx, n - oo,

Definition 2.2. The random variables
A
(n+1)p

defined with the help of the eigenvalues (14) are said to be Szegé distributions of the
matrix-valued function f(x) € %,.
Let n denote the random variable uniformly distributed in the interval [—m=, 7],

Py = A" = (k=1,..,(+1)p) #=0,1,2,..)

and let A(n) be the mixture of the random variables 1,(n), ..., 4,(n) with weights -:;—:

A() = -},—[Al(m )

Theorem 2.1. If the Szegé distributions of f(x) € £, are

Mup (" - 0: l’ 2’ '--):
then

(@) Nup = A(m), n — ==

(b) E(n,,) = E(A(m);

(©) D*(n.p) t D*(A(m)), n —~ ==
This theorem implies A(n) £&,.
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Proor. If we write the expression (15) into the form
(16) E[F(1.p)] = E[F(A(m)], n—+ =

then applying first the substitution F(4)=cos Af and then the substitution F(x)=
=sin At and adding the two obtained formulae, we get

_ |
) Py (1) = = 2 03, (0),
P j=1

where @. (¢) is the characteristic function of the random variable occurring in the index.
Formula (17) however is a tantamount to our statement (a).
On the basis of formula (16)

E(nt,) = ———tr TX(f) — E(A*(), n— ==.

1
(n+1)p
Hence

E(Myp) = ———tr T,(f) = E(A(n))

and this is our statement (b).
Starting again with formula (16), we get

1
(n+Dp

1
E(mp) = m— r T3(f) = —tl' ¢*(0) +

2
WZ’&: k+ 1w ok)e* k);
thus
4 i :
EMmup) —EMts-1p) = mk;: ktroK) o (k) +
. (,,H) erqo(k)fp (k) =0,
1.€.

Em:,) t E(A*(m), n — oo,

thus statement (c) is also valid.
In what follows we shall need theorem 2.1. in the special case p=1. Accordingly

we now formulate this special statement as the separate
Theorem 2.2. If the Szegé distributions of the function f(x) €%, are

qh (n e 0! I!23 "‘)’
then

@) n,=f(n), n— oo
(b) E(n,) = E(f(n)):
() D*(n,) t D*(f(n)), n—~ .
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The following theorem also follows from formula (16).

Theorem 2.3. If f(x) €%, is positive semidefinite and, outside a set of measure
zero, is positive definite then

1 |
E(logn,,) = log[Det T,(f))**v» —~ E [log [Det /1 (rr)F], n —+ co,

L
and log (Detf(q))-!" €&,. In particular

i » .
Progna, (1) — 5 f [Detf(x)]? dx, n— =, tER,.

Let € denote the set of those continuous distribution functions F(x) which are
strictly monotone increasing in some interval [a, b], and satisfy F(a)=0, F(b)=1,
where the values a = — = and b=~ are also permitted. The inverse of y= F(x) will
be denoted by F~1(y).

Theorem 2.4. If the expectation of the random variable & exists, and if its dis-
tribution function belongs to the set €, then the Szegd distributions of the function

s [x;rn] €%, weakly converge to the random variable &, i.e. £€8,.

Proor. Since

le*(y)d.v = [ xdF (),

—_—ca

F~1(y) is Z-integrable on the interval [0, 1] and F‘l‘x;:r] on [—m, @]

On the other hand, F(¢) being uniformly distributed in the interval [0, 1],
n = 2nF({)—n is uniformly distributed on the interval [—mx, n]. Now, by theorem

2.2., the Szeg$ distributions of the function F~! (\2—4;:{] weakly converge to the

random variable F—! _q;—_: = ¢.
In this case the Fourier transform generating the Toeplitz matrices is

n b
o) = % ) F‘l[%] e dx = e [ xe™F) dF (x), 1€ Ry,

Theorem 2.4. implies the following

Corollary 2.1. If the distribution function of the bounded random variable  belongs
to the set €, then ¢ €6,.

Corollary 2.2. If for the random variable & with an absolutely continuous dis-
tribution function there exist expectation and the density function is positive on an
interval [a, b] (with, possibly, a = — <, b=-) and vanish outside it, then ¢€&,.
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This yields the following

Corollary 2.3. Random variables of the normal, the y*, the Student (n=1), and
the exponential distribution resp. belong to the set &,.

2.2. If, instead of Toeplitz matrices, we start with the Hankel matrices of
a function, we are able to give a new method for the construction of elements of
the set &,.

Let f(x) be a function, Z-integrable on the interval [—1, 1]. Let P,(x) be the
n-th Legendre polynomial, and with its help us form the polynomials

4
Pa(x) = [n+-;j] P,(x) n=0,12..).

The symmetrical matrix of order n+1

1
H,(f) = [ r®ps0)f(¥)dx)  @p=0,1,...,n;1=0,1,2,..)
-1

is said to be the n-th Hankel matrix of the function f(x). Let the eigenvalues of

H,(f) be
Am k=1,..,n+1).

Definition 2.3. The random variables

PO =i =iy (k= Loant)

defined with the help of the eigenvalues of H,(f) are said to be the Szegé distributions
of the function f(x).

The following result is due to G. Szegé ([2], 88—89):

The eigenvalues of H,(f) fall into the narrowest interval determined by the
range of f(x). If, moreover, F(4) is a continuous function defined on this interval
then, in a probabilistic terminology,

E(F(n,)) - % [ E(f(cos A))di, n— .
0

Starting with this theorem we can prove by a method similar to that used in
establishing the first statement of Theorem 2.1. that the following holds:

Theorem 2.5. If n is a uniformly distributed random variable defined on the interval
[0, =], then
M = f(cosn), n— <=,
i.e. f(cos n)€L,.
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From the result of G. Szegé just quoted one also infers that

1
n+1

E(nn) =

in particular

tr Hi(f) = E(f*(cosm)), n—o (k=12 ..),

E(m) t E(f*(cosm)  n— =

3. On linear order statistics with a given asymptotics

3.1. In what follows, we shall make use of the results of 2.1.

Definition 3.1. We speak about linear order statistics generated by the sequence
of functions

(18) fi(x)eZ, k=12..)

if the k-th rows of the generating matrices (1) contain the eigenvalues of the (v—1)-th
Toeplitz-matrix of the function f,(x).

On the basis of Theorems 1.5. and 2.2. we have the following

Theorem 3.1. The linear order statistics generated by the sequence (18) have
asymptotically distribution fi(n)+...+f,(n,) (m=1,2,...), where n,, ...,n, are
random variables independent from eack other, and uniformly distributed in the inter-
val [—-=, + 7).

It is clear that with respect to Hankel matrices we can formulate a definition
and a theorem similar to Definition 3.1. and to Theorem 3.1. respectively.

On the basis of Corollary 2.3. Theorem 3.1. enables us to construct linear order
statistics, having e.g. asymptotically normal, %, Student (n=>1) or exponential dis-
tribution.

On the basis of Theorem 1.6. we moreover have

Theorem 3.2. If
.fl('h)'*""fm(qm):’é’ M-=» oa,

then the linear order statistics generated by (18) are doubly asymptotically & dis-
tributed.

We now prove the following

Theorem 3.3. Let f(x) be a function square-integrable on the interval [—n, n],
and let oy, (k=1, 2, ...) be nonzero real numbers. The standardized statistics belonging
to the linear order statistics generated by the sequence

ak.f(x) (k = ]’ 29 -")
are doubly asymptotically normally distributed if and only if

|mlls+ i + |am!s
(@G +... +a2)*?

—-0, m — ==,
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Proor. If we use the notations of chapter 1. and if the random variable «, /(1)
has characteristic function ¢,(t), then

@y (1) =0 (ak r)s
wh‘ere

o=k femsas

By Theorem 3.1.
(Pm,n(') il Q‘J,,,-(f) — (Pl(r) q’m(r)! n—+ oo,

where ¢,,.(7) is the characteristic function of the random variable

Cme = 01 f (1) + ... + 2, S (1)-
Here #,, ..., n,, are independent random variables identically distributed with #.
We now put
E(fm') = (@t ... +'xm)E(f(q)) = a,
D*(Cne) = (i +... +4z) D*(n) = o*

By what has been said previously

qo;.(r)=e_%"*’~°[%]“e”p[d‘] [ ]

f(x) being square integrable, one has

o) = 1+E(f()1— E(/*(n) 5 +o(11")

and, consequently,

\

log ¢ [% r] = i%E(f(n))f—%D“(f(n))%w[

Using this we get

o
o 4
a

a2+ ... + |an?
logg’m (f)———'i‘ZlOg(P[‘Ik ] [} 1! oo [ 1 Ms];
k=1
hence our statement follows.
One easily sees that
ol + .+ lef® _ 7/ T
(3+..+02)2 " m’
with equality only for |a,|=...=|x,|. Thus it is in this case that the speed of con-

vergence to the normal distribution is the greatest. Comparing this with the speed of
convergence to the normal distribution obtained for the Wilcoxon distribution in
connection with Theorem 1.7., we see that the convergence of the latter is stronger

by a factor }/m than the convergence just obtained.
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Both Theorem 1.7. and Theorem 3.3. give necessary and sufficient conditions in
order that linear order statistics have doubly asymptotically normal distribution.
None of these two theorems can be reduced to any other. Indeed, there does not
exist a function f(x) €.%,, the n-th Toeplitz-matrix of which would have eigenvalues
o, 22, ..., (n+1)2 where « is a nonzero real number because this would yield

o
=11 () =00) = 5@+2)

for any nonnegative integer n, what is impossible.

3.2. In what follows we are going to use the eigenvalues of the Toeplitz matrices
generated by the functions

f(x) =a—2bcos x, x€[—m, n]

(a real, b positive) for constructing linear order statistics.
The eigenvalues of the matrix 7,( f) ([2], 67) are

A =a+ba® (k=1,..,n+1)
with

™ = —2cos

i
n+2’
If {, denotes the n-th Szegd distribution of f(x), then by Theorem 2.2.

{,=a—2bcosn, n-—o,

E() = E(f)) =a

moreover

and
2n
n+1

D) = b1 20 = D2(f(q)), n— oo,

Now, if @, and b, (k=1, 2, ...) are fixed real and positive numbers, respectively,
then the linear order statistics generated by the matrices

a+baf® a,+ba ... a,+ bl
(19) as+ b Gy +by(ad) ... ay+beaty | = 4n (=012 ..)

are on the basis of Theorem 3.1. asymptotically
(20) (@, +...+a,)+bycosn+ ... +b,,co8 1,

distributed, where #,, ..., 1, are independent random variables having the same
distribution as . Moreover, the linear order statistics are doubly asymptotic if the
random variables (20) are weakly convergent for m —ce. If in Theorem 3.3. we
put %, = f,, we get a condition, necessary and sufficient in order that the standardized
statistics generated by the matrices (19) be asymptotically normally distributed.
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If we put a=26=%, we obtain a special case of some interest. Indeed, in

this case
f&x) = COS’-;-C-, x€[—=, x];
kn
(n) — . =
Al cos 30 12) k=1,...,n+1).
By what has been said before, the linear order statistics generated by the matrices
T, g AR o, (n+1)m
el T N TR, Rkl TR
A, = . n=0,12,..
GOt . Y it . cos? M ( )
2(n+2) 2(n+2) 2(n+2)
are asymptotically

cos’%+...+cos’% m=1,2..)

distributed and the corresponding standardized statistics are doubly asymptotically
normally distributed.
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