Semiring multiplications on commutative monoids

By HENRY E. HEATHERLY (Lafayette, La).

1. Introduction

Let (H, +) denote a commutative monoid with identity 0. A semiring multi-
plication defined on (H, +) is a binary operation #:HXH - H such that

1. (H, %) is a semigroup,
2. ax(b+c) =axb+axc and (b+c)*a = bxa+c=a for a, b, c€H.
If it is also required that

3. 0xa=a+0=0 for a€H,

then (H, +, %) is called a hemiring. For convenience a* b is denoted by ab. (The
basic ideas and terminology for hemirings can be found in [3].)

In Section 2, the set 9 of hemiring multiplications is constructed for an arbitrary
commutative monoid (H, +). These multiplications are characterized in terms of
mappings from (H, +) into End (H, +), the set of endomorphisms on (H, +).
In Section 3 the discussion is narrowed to the class of monogenic hemirings (which
includes division hemirings) by confining consideration to multiplications deter-
mined by automorphisms on (H, +). Structural decompositions of the multiplicative
semigroup of monogenic hemiring are given.

The methods developed in Section 2 can be used with the help of a digital compu-
ter to find all the hemirings on semigroups of low order. Such a computational
project is in progress and will be the subject of a future paper.

In the sequel | X| denotes the cardinality of the set X. The endomorphism which
takes every element into zero is denoted by @ and the identity endomorphism on
Hby 1.

2. Hemiring multiplicatidns

The set End (H, +) of all endomorphisms on (H, +) is itself a semiring under
the operations of pointwise addition and composition of functions, i.e.

[+ Bl(x) = a(x)+p(x) and [xop] (x) = 2(B(x)).

'I‘heorém 2.1. Let (H, +, *) be a hemiring and for each a ¢ H define ¢,(x)=ax,
Jfor each x € H. Then
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1. ,€End (H, +),

2. 9,(0)=0 and ¢,=0,
3. Qass = Pat P,

4. Qab = PaOPs;s

5.

as a consequence of the above the mapping ®:a—q@, is a homomorphism
from (H, +, =) onto (®(H), +, ©) and the latter system is a hemiring.

The proof of the theorem is straightforward and calculational and will be
omitted.

It is possible to reverse this process. Let &(H)={x€End (H, +):2(0)=0}.
Then (&(H), +,0) is a hemiring. Note that any mapping f:H—&(H) defines
a multiplication *, on (H, +), via a*fb f(a)(b). This operation is left distributive
over “+7. The following theorem gives sufficient conditions for (H, +, /) to be
a hemiring. (In view of Theorem 2.1, the conditions are also necessary.)

Theorem 2.2. If f:H—~&(H) is a mapping satisfyving
. fla+b) = fla)+f(b),
2. fla %, b) = fla)o f(b),
3. f10)=0,
then (H, +, %,) is a hemiring.

The proof is straightforward.
Note that fis a homomorphism from the hemiring (H, +, *,) onto the hemiring
( f(H), +, o) We call (H, +, *,) the hemiring determined by fr

Theorem 2.3. Let (H, +, ;) and (H, +, %,) be the hemirings determined by f
and g respectively. Then (H, +. %,) is tsomorph:c to (H, +, %,) if and only if there
exists an automorphism o € Aut (H +), such that for each x€H,

f(x) = a~tog(a(x))oa.

PROOF. Let o be an isomorphism from (H, +, ;) onto (H, +, *,). Then for
each x, b€H, a(x *; b)=u(x)#,2(b) and «€Aut (H, +) (Note the latter yields

v(0)= 0) Therefore
2 f(x) (b)) = g(x(x))(x(b)),
[oeo f(x)](b) = [g(x(x))ou](b),

for each b€ H and aof(x) = g(a(x))ox or f(x) = a~log(a(x))ox. The steps are
reversible, hence the converse holds as well.

Corollary 2 4. Iff determines a hemiring multiplication =, on (H, +) and =,
determines a mapping @ as in Theorem 2.1, then f= .

Let 9 be the set of all hemiring multiplications on (H, +) and let M’ be the
set of all left distributive binary operations on (4, +) which have the property that
O%a=a%0=0. By Theorems 2.1 and 2.2 for 9 and the obvious analogs for MM’
each element of M’ is determined by some f:H —~&(H) such that axb= f(a)(b).
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(Note that elements of 9’ need not be associative operations nor necessarily right
distributive; however, each (H, +, =), where * is in 9, is a seminear-ring [2].)
Define

(%4 %) (x, ) = %,(x, y)+ %,(x, y).

Note that
(%4 %) (X, ») = X%+ x5, = f(X)(») +g(x) () =

= [f(x)+g))(») = [[[+&]()](») = #p4,(x, p).

Hence #,+ %, = #,.,. Thus 3 and M’ are closed under *“+.
Theorem 2.5. (I, +) and (M’, +) are commutative monoids.

Let 7 be the set of all mappings from H into &§(H) and 7 be the subset of 7’
described in the hypothesis of Theorem 2.2. Observe that (7, +) and (7, +) are
commutative monoids, where **+ "' is pointwise addition of functions.

Theorem 2.6. The mapping f— =, is an isomorphism of (7, +) onto (W', +) and
(suitably restricted) of (7, +) onto (M, +).

PrOOF. Homomorphy is a consequence of #,+ x, = *,.,and surjectivity fol-
lows from Theorem 2.1 and its analog for M. If #,= «,, then for each a,bcH,
*;(a, b)= =,(a, b) and f(a)(b)=g(a)(b): this leads to f=g.

Corollary 2.7. (W', +) is isomorphic to the direct product of |H| copies of
(6(H), +) and (M, +) is isomorphic to a subsemigroup of this direct product.

PrOOF. (W', +)=(T", +)=11(6(H), +).
Corollary 2.8. If |H|=n, finite, and |§(H)|=m, then |IM|=m".

The number of non-isomorphic hemirings defined on (H, +) will be much lower
than this upper bound m".

All hemirings on a given (H, +) can be constructed using mappings from H
into §(H). The ones so constructed can then be sorted into isomorphism classes using
Theorem 2.3. Even for very small monoids this process requires vast numbers of
calculations, checks, and sorting, too much for the unaided human. However, with
the help of a high speed digital computer the process can be easily carried out for
certain monoids of low order. The author is presently engaged in such a project. It is
hoped that the examples generated will be instructive.

3. Monogenic hemirings

Let (H, +, *;) be a hemiring and define A(H)={x€H:xH=0}, P(H)=
= H—A(H), Aut (H, +) to be the set of all automorphisms on (H, +), and /(H) to
be the left identities of (H, */).

Definition 3.1. A hemiring (H, +, #,) is monogenic if and only if f(P(H)) is a
subgroup of Aut (H, +).
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Without ambiguity the sets A(H). I(H), and P(H) can usually be denoted simply
by A, 1, and P respectively. Some immediate observations concerning these sets are
collected in the next theorem.

Theorem 3.2. Let (H, +, ;) be a monogenic hemiring. Then

1. fix)=1 if and only if x<I. hence I+0,

2. I={ecH:e®=e, ex=0},

3. I, A, and P are subsemigroups of (H, *;),

4. xH=H and xP=P for each x¢P,

5. x is left cancellable in (H, *;) if and only if x €P,

6. (P, #) is a right group [1, p. 37],

7. A is the kernel of the semiring homomorphism f and hence is a k-ideal,
8. PA=A and P+ A = P,

9. if f(x) has order n, then x"€l, x4 1 for 0<j<n, and x"*'=x,

10. (f(H), +, o) is a division hemiring. ;

Theorem 3.3. If (H, +, #,) is a monogenic hemiring, then P(H) is isomorphic
to the direct product of the group ( f(P), o) and the semigroup (I, =).

PROOF. A left coset modulo I is a complex of the form x/, x € P. Two left co-
sets are identical or disjoint; so the set {x/:x ¢ P}= P/I partitions P. The operation
al - bl = abl is well-defined on P/I and P/I is a monoid with identity /. The relation
xI— f(x) from P/I onto f(P) is an isomorphism: hence (P/I, -) is isomorphic to the
group ( f(P), o). The relation (x7, i) —xi, where (x/, i) is an element of the direct
product P/I®1, is an isomorphism onto (P, #).

Theorem 3.4. If (H, +, %;) is a monogenic hemiring and ( f(P), o) is periodic,
then P is the disjoint union of |I| groups each isomorphic to ( f(P), o).

Proor. For each 7 €7 define
P; = {x€P:x"=i, for some integer n=1}.

Using the fact that every element of f(P) has finite order calculation shows that
P; is closed under = and is a group (with identity /). The sets P;, i €1, are disjoint: so
{P;:i€l} is a partition of P and P’ is the disjoint union of the |/| sets P;. Since f
restricted to the semigroup (P, =) has kernel /, the homomorphism obtained by
restricting f/ to P; has trivial kernel and hence is a monomorphism. For each p<P
calculation reveals that pi € P; and hence f(pi)=/f(p); so f restricted to P; is an
isomorphism onto ( f(P), o).

Corollary 3.5. If H is finite, then |P| = |I|«|f(P) and |H| = |A|+|I|-|f(P)..

Corollary 3.6. If (H, +, =) is a monogenic hemiring with no (non-zero) divisors
of zero, then
- (H={0}, %) = (f(H—{0}), o) @, =),
2 H— {0} is the disjoint union of |/| groups each isomorphic to ( f(H—{0}), ©),
3. (H, +,7) is a division hemiring if and only if |/|=1, i.e., there is exactly
one non-zero idempotent.



Semiring multiplications on commutative monoids 123

Division hemirings are monogenic, as are finite hemirings with the left cancella-
tion property (i.e., ax=ay and a=0 implies x=y). A monogenic hemiring with no
non-zero divisors of zero (a hemidomain) has the left cancellation property. The right
cancellation property does not usually imply two-sided cancellation, even in the finite
case: however, for monogenic hemirings it implies even more.

Theorem 3.7. If (H, +, *,) is a monogenic hemiring satisfying the right cancella-
tion property, then it is a division hemiring.

Proor. If f(a)=f(b), then ax=bx for some x#0 and hence a=b; so f is an
isomorphism onto the division hemiring ( f(H), +, o).
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