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A cosine operator function is a mapping C of the field of real numbers R into
the linear topological space B(X), the space of bounded linear operators in a Banach
space X (real or complex), satisfying for &,n€R

CE+n+C(E—n) =2CECMH), CO)=1

and continuous in the strong operator topology of B(X) (cf. [2], [3]). The generator
operator A of C can be defined e.g. as Ax=C"(0)x (x € D(A)) with domain D(A4)=
={x €X:C(¢)x is twice continuously differentiable in R}.

M. SovAa has shown ([4], 4.9.) that if 4 is the generator of a cosine operator
function in a real Banach space X, then A is the generator of a semigroup of class
(C,) in X. In [5] he gave an example showing essentially that the converse is not
generally true.

Theorem of Sova (cf. [5), 4,13.). If X is a real separable infinite-dimensional
Hilbert space, then there exists an operator A such that A is the generator of a semi-
group of class (C,) but of no cosine operator function.

Remark. The proof of this theorem is not quite correct in [5], though the example
given there is. We give here the corrected proof.

ProoF. Let {e;; i=0,1,2,...} be a fixed orthonormal basis in X, x€X, and
xi=(x, ) (i=0, 1,2, ...). Define

D(A) = {.\'E X: S R(G+ x5, < m}
k=0

and notZk(x“ + X3 +1) <<casin[5]. Forx €D(4) put Ax = 7k(1a+leu—xuea;l)

Then we get as in [5] (Ax, y) = —(x, Ay) for x, y€D(A), thus D(A)cD(A™). On
the other hand, suppose y<D(A"), then [(Ax, y)|=c|x|| with ¢=0 for x¢€D(A).
Define
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then y{» € D(A). For a fixed p we show by induction that
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Indeed, for n = 0
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lys?ll = {:.2 (Vi +y-3n+1)} = [y

=0
and
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Moreover, if (#) is true for a fixed n, then
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From this we obtain
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k=0

If we introduce
1 1

M(»,c)= sup ¢ F|y|F < =,

=p<=-e=

we get for p= 1,2, ... that

P
2k (Vh+yii) = M(y,¢) < =,

k=0

consequently y€D(A) and thus 4* = —A, A is normal and, being (Ax, x)=0 for
x €D(A), bounded above. Hence A generates a semigroup of class (C,) of normal
operators in X, while no cosine operator function as it is shown in [5].

More can be stated on a cosine generator A if the underlying Banach space X
is complex. H. O. FarTORINI remarked in [2] that 4 then generates a semigroup
U holomorphic in the right half plane and of class (C,) in (0, =), for which

1 eo
U@x = (n-8) ® [e ™ Cn)xdn, (xX, Reé =0)
0

where C is the cosine function generated by A. G. DA PraTo and E. Giusti have
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even indicated that 4 generates a holomorphic semigroup of class H(—n/2, n/2).
Now we prove the following

Theorem. In a complex Banach space X a cosine generator A also generates a
semigroup of class H(—mn/2, +=n/2), but the converse is generally not true.

ProOF. Let A generate a cosine operator function C with ||C(¢)| = Me“lél

M
£ e = 2. T ———
(EER, M=0, =0), then ||[uR(u?; A)| Re s

A= |A|-e(—n <0 <+n)

for Re u=w. If

with (Im 4)? > —4w® Re A+4w*, then Re JZi=Re {|A|/2¢?}=|i[V2 cos (0/2)=w,
consequently

M

0 o
cos ~ iR
Let 0=¢=mand find 2,>0 such that
1. {i:larg(A—4,)| = n—e}c{A:(Im 1)’ = —40* Re 1 +40'},

IAR(A; 4] =

® 1
2. for |arg(A— A]|—rr—s we:haveHhrz 2005[2 5

For A¢{i:larg(A—A,)| <= m—&) we have with 0 = arg4 that |0/2] < %—%
thus cos (0/2) = cos [%__%] , consequently
R
IAR(A; A)|| = B R M,.
[2 2
Therefore we get
M, M,
I = .__ = -

where d,(4) denotes the distance of 4 from the sector
{A:m = |arg(A—2,)| = n—ég},

and [1] (Theorem 12.8.1.) yields the first part of the theorem.

To prove the second part we essentially use an example in [1] (19.6). Define
A = {4:Rel = —|Im A[**} and let i(z) be a fixed function holomorphic in {z:|z|< 1}
and mapping this circle conformally upon 4. Let X be the Banach space of complex
functions f/ holomorphic and bounded in {z:|z|]<1} and having the property that
for every £=0 there exists an M = M (g, /) such that | f(z)| =¢ on the set {z: h(z)| =M},
where || f]| is defined by sup |f(z)|. Put [Af](z)=h(z)- f(z) with domain D(A)=

jz]=<1
={f<X:h(z)f(z)€X}, then 4 is the generator of the semigroup [T(Z)f](z) =
€4 "), f(z). The maximal domain of analyticity of 7(Z) is the sector in which
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the support function F(Z) of the closure of 4 is finite, that is {—n/2<arg Z=n/2}.
In this sector we have | 7(Z)| =exp {F(Z)}, thus T is of class H(—=/2, n/2). From
[1], Theorem 19.6.1. we get that (A) is the closure of 4. On the other hand, if A4
were a cosine generator, then for some w=0 we should have

o(4) < {A:(Im 2)? = —40? Re 1 +40t),

which does not hold here. Thus the proof is complete.
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