Growth of geometric means of an entire function

By J. P. SINGH (Kurukshetra)

1. Introduction

Let f(z) be an entire function of order g. Let o, and 4, respectively, be the
exponent of convergence and lower exponent convergence of the zeros of f(z);
so that

. SuPplogn(r) @ i o L
(1.1) 311‘2 inf"Er——;tl 0= =0==)
where n(r) represents the number of zeros of f(z) in the disc

D= {z:|z] = r}.
Further, let

(1.2) N(r) = f—{'—gﬂdx.

To

Define the following mean values of f(z):

(1.3) i) = exp [515 f log | f(re'®)| d@],
r 2x
SAS A [2#” 5[ af log| f(xem)|xdxd9].

Further, let

r

2n
(1.4) g(r) = exp [2—;;% f log | f(xe'®)| x* d© dx], 0 <k < oo.

0 0
Clearly, if T(r) denotes the Nevanlinna’s characteristic function, then
G(r) = exp{T(r)}

k r
g (r) = exp [—r,‘% [ T dx],

and so the orders of g,(r) and G(r) do not exceed the orders of f(z).

1*
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We remark here that the result of SRivAsTAVA [9]

Sup loglog G(r) @

=) ,!}.To inf  logr A
and of Kumar [3]

su
(1.6) lim Ploglog gi(r) 2

ey | Sl 77 SO

can be negated as G(r) and g, (r) are solely-exprecible in terms of the zeros. We can
consider an entire function with large M (r) (maximum modulus) and small num-

ber of zeros (for instance f(z) =exp (z) and f(z) =exp (z?) cos ¥z where p is any posi-
tive integer).*

In view of Jensen’s theorem on the zeros of f(z), we note that

Sup loglog G(r) @

e .hjl inf log r Ex 0=1 =0, = «),
and
. SUP loglogg,(r) _ @1 . _

In this paper, our aim is to study the growths of G(r) and g, (r). The results are
given in form of theorems.

2.

Theorem 1. Let f(z) be an entire function of exponent convergence o, and lower
exponent convergence 4,, then

RN 13 RS W | log G(r)
lmnf—-g—a—_lms .
e AR e Tt ST

PrOOF. We first prove the latter half involving Z,, supposing that 4,=0. If
this is not true, there will be a positive number j such that for all sufficiently large r,

log G(r) | (L
e o =)

By Jensen’s theorem

log G(r) = f "S" +o(1).

Fo

* This fact has not been pointed out in the reviews of Srivastava’s paper [9] MR [2842216]
and KuMar’'s paper [3] MR [33 4 4280).
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Substituting for log G(r) in (2.2), we have

fr
2 x [1 ]
e T ;L—l“J +0(1) (r - =)
or
-1
(2.3) n() >[%—j] +0(1) (r ~ ).
1

Therefore, by the integration of (2.3)
log N(r) = [-;-—-j] logr+ O (logr)
1
which in virtue of Lemma 1.4 [1], leads to the contradiction
g s ARG S ] e
A = llmlnf roadoad ¥ X —jl .

Similarly we prove the rest part of the theorem.

Remark. Our theorem is not only more general than Jain’s Theorem 1 [2,
Chapter 1] but has a different proof from his as well as shorter and more widely
applicable.

3.
Theorem 2. For an entire function f(z) of exponent convergence 9, and lower
exponent convergence iy, we have

: log G(r) A
3.1 Imsuyp————=1——.
1) e D () log 1 0

PrOOF. When 2,=0 or g,= == (i.e. g7 '=0), it is obvious from Jensen’s theorem.
Hence we suppose that 4,=0, g, < = and deduce from Jensen’s theorem

logG(r) e oo
where
f log x dn (x)
J(r) = :“ 1
f log n(x) dn(x)
and i
[ log n(x) dn(x)

_n(r)logn(r)—n(r)+aconstant.
n(r)logr & n(r)logr

P(r)="
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Now

e e BORT - o 2
(3.3) llm;nf.f(r) = ll?.].:_nf e e
and
(3.4) lim inf P(r) = limin flog;(:) = A,

(3.3) and (3.4) in conjuction with (3.2), prove the theorem.

4.

Here we prove more sharper inequalities than those of SRIvASTAVA [10]. In what
follows we shall prove the following:

Theorem 3. For an entire function of finite order o =0, we have

lim sup ——— gG() = lim sup —= () = eoT — ot,
i ORI | s o TP
(4.2) llrrl:nnf R logr éh?l:.,nf = =0
and
oo JOR G e oW
(4.3) ll:l_l“lbnf #hoar — ]Ii‘ll:onf - =1.T.

where T and t are type and lower type (1 #0) of f(z) respectively.
For the proof of the theorem we require the following lemmas.

Lemma 1. For any entire function of finite non-zero order o

(4.4) eoT = A+ ot

where

nr)

4 = lim sup —=

re=o0

Proor. We suppose f(0)=0. By Jensen’s theorem

logM(r) = O()+ [ "S‘)d

o

n(ry)
re

1

Let A°>0 such that 4 —A4"=¢=0. Suppose >A" where ry=r,(4"). Then
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for all r=r,
4.5) logM(r) = O(1)+log M(r,)+A4'r§ ﬁ =

=0(l)+logM(r)+4r§ [logrL] .
i

=>t’ with t—t"=¢’. There-

i M
Also, it is possible to choose r; such that log - (ry)

fore, from (4.5) for all r=r,, we obtain

log M(r) 0 o r
(4.6) e Eas = [—r-] [r + 4 log Tl—]+0(r").

Now, by the usual method of calculus we maximset the first term of right hand
side of (4.6). We find its maxima which is attained for ihat value of r which satisfies
the relation

[ A — ot
-l

and that maximum value is
) 4 - ot' -4’
Q p AI ¥

Therefore from (4.6), we get

log M(r) a’ ot' — A’
(438) = [?] exp[ = ]+ow)
for r satisfying (4.7). We see that
(4.9) oT = A" exp [[—%E—-] - l] :

Now, since A" can be fixed arbitrar')r close to 4 and ¢” arbitrary close to t, we
immediately deduce from (4.9) the following result

oT = Aexp[[%']— 1].

Since for every real x, e*=1+x, we finally get

eoT = A+ ot
or

lim sup % = egT — oT.

Lemma 2. [5].
(4.10) lim int‘-‘%Jﬂ = ol.

r—=oo
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Lemma 3.
@.11) ' timinf 2 < 4,7,

- o0

Proor. It is known that

L n(r)
Let

(nr) — n(r) logM(r)
r®  logM(r) re

It is well known that if @(x) and @(x) are two non-negative functions then

lim inf {¢(x) - ®(x)} = lim inf ¢ (x) lim sup ®(x).

|
Here ]D;f‘?(r) and ‘Ingf(r) are non-negative, so we have
lim inf 1t} = lim inf lly, lim sup i il

s e DR MULFY * i re

which along with (4.12) and definition of type give us
BN | | R
Iim ll'lfT = AIT.

r—+co

PrOOF OF THEOREM 3. From (1.3), we have

n

log G(r) = O(1)+ f ;) dx = n(r)[logr—1logr]+0(1)

or
log G(r) _ n(r)
rlogr —

Proceeding to limits and making use of Lemma 1, Lemma 2 and Lemma 3, we
get the required inequalities.

+0(ro).

- %

Inspite of the fact that the functions log G (r) and log g, (r) have the same order
and same lower order, it is to be noted that for an entire function f(z) of exponent
convergence ¢, (0= p, = =) the asymptotic relation

log G(r) ~ logg(r) as r — o

need not be true always, as in the case of ordinary means [4]. Consider for instance an
entire function

1) = ”i[l +z/n%
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for which
log G(r) ~ r?
and
2(k+1)rt
log g, (r) ~ "fﬁ

We give below a theorem which gives us information as to how the function
log G(r) and log g, (r) grow relative to each other as r— oo,

Theorem 4. Let f(z) be an entire function of finite lower exponent convergence
/a5 then

(:+:2)
fim inf 128 () k+l][[ k“ ] >0

ree 10g 8i(r)

!ll"u

(5.1)
1, Al - 0$

I i

ProoF. Since
SUp loglog G(r) @1

r!.r:l inf log r e : y (0= A = 0y = ),

Then, following SHAH [7] there exists a lower proximate order 4,(r) (0=4,< =)
relative to log G(r), satisfying the following conditions:

(i) 44(r) is a non-negative continuous function of r for r=r,=0.

(i) 4,(r) is differentiable for all r=>r, except at isolated points at which Aj(r—0)
and A1(r+0) exist.
(111) lim rig(r)logr =0

r—-oa

(iv) lim A,(r) = 4,

log G(r)

(v) rA® = logG(r) and liminf ()

r-—-oo

From (i)—(iv) deduce that

... J(hr)
6

From (1.4), we have
(5.3) log g (r) = m f log G(x)x* dx = log G(r).
Further

(54) logg(R) =

=hh, h=1 where J()=ra® ([8).

R"” fx"logG(r)dx = R"” fx"logG(r)dr”'

RK+1 _ xk+1
= —"-—R;F_-]_—]Og G(r).
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Let R=xr, x> 1. Then

xk+1
log G(r) = —m7— log &u(x7)
and
logG(r) _ _x**! log gi(xr)

1= Il,n_].:.,nf T = 2= ]I:!.].:,nf 70

From which it follows that

log gy (xr) _ xiq

(5.5) IIT.:?{ 70 = —
Put
log g (xr) s log gi(xr) J(xr)
J(r) Jr) e
Here
log gy (xr) J(xr)
Ty s
are non-negative and so that
. . o logg(xr) . . o logg(r) &
llll:ll :onf —J(r) = 1151_1. Lnf ___J(r) 5

by (5.2). This inequality with (5.5) gives us

. . ologg(r) xk+1i_]
IIT_Lnf 70) = FFne

Using this inequality and from the equality

log G(r)  logG(r) J(r)
logge(r)  J(r) logg(r)’

we get

..o 1og G(r) i o OREE) 5 J(r) xlk+ig+1)
5.6 1 bl i SR :
( ; I?-]-::]f loggk(r) = Ililanf J(r) I ,_“:l loggt(r} - xk-l-l_l

Now, by the usual method of Calculus we minimize the right hand side of
(5.6). We find that its minima is attained for that value of x which satisfies the re-
lation

X = [(k -} 2.1 o ])/;-1]”“1-“, AI = 0.

Substituting this value of x in (5.6), we get

{1+ 4, /(k+ 1))
lim inf log O(e) = % [l+ k+l] .
r-e 10gg(r) — k+1 3

In the case when 4,=0, the minimum value of the right hand side of (5.6) is
one as x —<=o. This completes the proof of the theorem.

Finally, I wish to accord my warm thanks to Dr. S. H. Dwivepi, (University of
Udaipur) and Dr. V. B. GoyAL (University of Kurukshetra) for their kind and in-
spiring encouragement.
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