A note on radical semisimple classes
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Section 1.

The purpose of this note is to investigate the character of those finite sets of
finite fields which determine radical semisimple classes. These classes are provided
with a lattice structure and properties of this lattice are found. Definitions of radical
related terms can be found in [2] and for those of lattice related terms in [1]. As
usual, /em will mean the least common multiple, ged the greatest common divisor,
and a|b means a divides b. All rings considered will be associative.

In [6], P. STEWART has completely characterized all radical semisimple classes
as subdirect sums of strongly hereditary finite sets of finite field.

Definition 1. A class of rings C is called strongly hereditary if whenever ReC
and S is a subring of R then S€C.

Definition 2. Let K, be the class of all rings R such that x"=x for every x€ R,
R0 e o,

Stewart also establishes in [6] that every ring in a given K, is isomorphic to a
subdirect sum of fields from a strongly hereditary finite set of finite fields. It is these
sets of fields we investigate and the associated K.

Section 2.

Let Z,. be a finite field of order p”, p a prime and n a positive integer. It is well
known that the subrings of Z,. are exactly those fields of order p™ where m|n. Now
consider the following finite set of finite fields:

S = {Zp1, ZpYs ... ZUP, 2Dy, ZD3s «.cr ZUR, ooy 2Py 2D}, s ZPR}

where the p; are prime numbers, i=1, 2, ..., n. Although S satisfies the requirement
to be strongly hereditary, there are more fields in S than will normally be needed in
our context. Thus we make the following definition.

Definition 3. A set F will be called a proper strongly hereditary finite set of finite
fields if whenever Z,.c F where n is the highest power of the prime p for which
Z,.€ F, then Z?... € F only if m|n. Thus, for example, {Z,, Z;, Z 4} is proper where as
{Z,, Zs2, Zys) 1s not.
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For each radical semisimple class K, of Definition 2 we want to find which
strongly hereditary finite set of finite fields F, determines K.

Lemma 1. Let R<K, and suppose M is a maximal ideal of R. Then R/M is
a finite field and |R/M|—1 divides n—1, where |R/M| denotes the order of RIM.

PrROOF. R is von Neumann regular, since for n=2, a*=a for all a€ R so a=aaa.
For n=2, a"=a for all ac R so a=aa""*a. Hence R is Jacobson semisimple. Since
R is commutative [3, p. 217], the Jacobson radical of R is the intersection of all
maximal ideals of R. Hence R is isomorphic to a subdirect sum of fields [5, p. 119].

We note that R must have maximal ideals. For if R has no maximal ideals then
R has no prime maximal ideals so R is f;-semisimple, where f, is the upper radical
determined by all simple prime rings. But ,S G, the Brown—McCoy radical and
then, since R is commutative, J(R)=G(R) [2, p. 118], a contradiction.

With R/M a field satisfying x"=x for every x€ R/M we have that R/M must
be a finite field. Now R/M— {0} is a multiplicative (cyclic) group of finite order
satisfying x"~'=1 for every x¢ R/M — {0}. Hence |R/M |—1 divides n— 1, completing
the proof.

Corollary 1. Let REK,. Then R is a subdirect sum of a finite number of finite
fields.

Proor. The finite number arises from the fact that there are only a finite num-
ber of possibilities for |[R/M | where M is a maximal ideal of R.

If R runs through all the distinct rings of K,, then any prime power p* with
p*—1|n—1 is obtained as the order of a finite field Z,« such that R/M=Z, for
some RE€K, and some maximal ideal M in R. This is clear, for let Z be a finite
field with p* —1|n—1. For any x€Z, one has x*~'=1 implying x?=x. Then
if n—1=g(p*—1), x"1=1 and so x"=x for any x€Z,. Then ZcK, with max-
imal ideal (0) so that Z,/(0)= Z . Now define

F, = {Z:p*—1 is a divisor of n—1}.

That is, F, consists of all finite fields Z, such that |Z,|—1 divides n—1. We have
then shown

Lemma 2. A finite field Z «< F, if and only if p*—1|n—1.

We note that F,= @ since |Z,—1=1|n—1 for any n=2. Determining which
finite fields Z,. are in a given F, is simply a matter of determining for which primes
p does p*—1|n—1 for some x. For example, F,={Z,, Z,, Z;, Z,} because
2—1|6,2*—1|6,3—1|6, and 7—1]6.

Lemma 3. Rc K, if and only if R is a subdirect sum of fields from F,.

PrOOF. We have seen that if R€ K|, then R is such a subdirect sum. Conversely,
let R be a subdirect sum of fields from F,. For x€R one has x=(..., x;, ...)

k
with entries x;€Z g, F,. Then pli—1|n—1 so xf"":] and hence x{"'=1 and

x7=x; for all entries x; in x. Hence x"=x for all xé R so R€K,.
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Remark. It may be pointed out that for n=m, F,=F,, is possible and hence
K,=K,. For example, F,={Z,, Z3}=F,,.

As shown above, F, can equal F,, with n=m. To obtain a well-defined lattice
structure we must for any fixed positive integer n=2 consider all the F;=F, and
retain only that F; with least index and omit all the others. This can be done in
the following way. Let n be a fixed integer and suppose t—1=Ilem(pft—1) where
pki—1|n—1. We show that F,=F, and that t is the least integer with the stated

property. If Z,,[.aﬁ F, then xfjf'“:l for any xEZp?, sO0 x*"!=] and thus x*=x
and Z,,?,é F,. On the other hand, suppose ZP:"€ F,. Then, by definition, pji—1|t—1
and t—1/n—1 so for any '\‘EZPE‘ we have x*"'=1 and hence x""'=1. It follows
that x"=x and that Zp;,.e F,. Let n=2 be a fixed integer. We see that 7, with t—1=

=lem(pfi—1), where pf'—1|n—1, is the least integer for which F,=F, by definition
of least common multiple.

Henceforth then, we will assume when referring to any F, that t— 1 =Ilem(pfi—1)
where p¥i—1|7—1. We thus avoid any duplicity in the listing of the F,. To illustrate,
we give the first few possible F.. With L denoting the entire set of F, we have

L: {Fz’E’!'FivF&"F’?sFB*FB’Fl],!FIMFH’FIG)FI?iFID’FmsFﬁ‘vama FﬁﬁsFﬂ?s F29;
Fyis Fiay Faiy 1)

WC note that F8=F12=Fl-l:Fls‘:FﬂO:F24=F2H=Fsﬂ="‘=F23 ‘Flﬂ:F23=F34=
=...=F‘, F33=...=F17, F35=...=F3, FM=...=FS and SO fOI’th.

Remark. The fields of a given K, are exactly those in the corresponding F,.
We also note that the above results differ from those in [7, Chapter 6] and [8]. The
following three points should also be made. First, not every strongly hereditary
finite set of finite fields is exactly equal to some F,. For example {Z,, Z,:, Z,s}
is such a set, however it is a proper subset of F,o;={Z,, Z3, Z32, Z3s, Z;, Z53} and
is not a subset of F, for n=104. Secondly, every proper strongly hereditary finite
set of finite fields is not necessarily some F, for {Z,, Z,:, Z,} is such a set and is
not equal to any F, and is a proper subset of F,;. Finally, while every F, is necessarily
a strongly hereditary finite set of finite fields, it need not be proper as is the case with
Fye={2Z,, Zn, Zy}.

Theorem 1. The following are equivalent:
A =
2 FCF.
3. Whenever p*—1|n—1, then p*—1|m—1.
4, n—1|m-—1.

PROOF. (1)~(2). Let Z.€F,. Then Z,€K,EK,, so ZuEF,.
(2)~(3). Let p*~1|n—1. Then Z€F, so Zx<F,, and hence p*—1|m—1.
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(3)—~(4). We know that n—1=Iem(pl—1) where pfi—1|n—1. All such pf—1
are divisors of m—1 and hence lem(pfi—1)/m—1 so n—1|m—1. (4)—(1). Let
Z < F,. Then p*—1|n—1 so p*—1|m—1. Hence Zx€ F,, and F,S F,,. If REK, then
R is a subdirect sum of fields from F, and hence of fields from F,,. Thus R€K,, and
K,SK,.

For integers n and m satisfying n—1=Ilem(pfi—1) where pfi—1|n—1 and
m—1=Iem(qj'—1) where gji—1|m—1 we have F, and F,, in L. These in turn
determine radical semisimple classes K, and K,,. Hence K[ K,, is a radical class and
K,NK, is a semisimple class [4]. Thus K, [ K,, is a radical semisimple class and must
equal some K, .

Theorem 2. If K, and K,, are radical semisimple classes then K,N\K,=K, is a
radical semisimple class where r—1=ged(n—1, m—1).

Proor. We first show that F,(\F,=F, with r'—1=ged(n—1,m—1). Les
Z,.€F,NF,(F,NF,#@ for Z,cF,NF,). Then p—1|n—1 and p*—1|m—1 ot
p'—1|ged(in—1,m—1)=r'—1.Thus Z,.€ F,.. Conversely, if Z,.€ F,. then p*—1|r'—1.
But #'—1|n—1 and r'—1|m—1 so p*—~1|n—1 and p*—1 /m—1. It follows that
Z,.€F, M F,.Thus F,N F,,=F, wherer'—1=gecd(n—1, m—1). Now suppose REK,..
Since r'—1|n—1, K, €K, by the previous theorem and hence R€K,. Similarily
ReK,, so ReEK,NK,=K,. Thus K,. S K,.

Conversely, if REK,NK,=K, then R is a subdirect sum of fields from F,.
A field in F, is a field in K, and hence both a field in K, and K,,. Thus a field in
F, is a field in F,N F,,=F, or F,S F, which implies K,S K,.. Thus K,=K,. and in
particular r=r" by our earlier identification. Hence r—1=r"—1=ged(n—1, m—1),
completing the proof.

We see that the K, of Theorem 2 will serve as the greatest lower bound for
K, and K,,. To obtain the second part of our lattice structure we now consider
F,UF,. For Z,€ F,UF, either Z,.€F, or Z,.cF, or both. Hence p*—1|n—1 or
p*—1/m—1 or both. Thus p*—1 |lem(n—1,m—1). Let t—1=Iem(n—1, m—1). Then
n—1|t—1,m—1|t—1sop*—1|7r—1 and we have Z _.€ F,. Hence F,U F,,€ F, where
t—l=lem(n—1,m—1). We must show with 7 as defined that F_ is the smallest
F, such that F,C F, and F, < F,. Thus suppose F,€ F, and F,, S F,. Then by
Theorem 1 n—1|k—1 and m—1|k—1. Thus 1—1=lem(n—1, m—1)|k—1. Hence
F.< F, and F, is the smallest such F.

From F,C F, and F,,C F, if follows that K,S K, and K,,€ K,. Now suppose
K,SK,and K,S K,. Then F,C F, and F,,C F, so by the previous argument F. € F,.
Hence K, K, and with t—1=Jlem(n—1, m—1) we have that K, is the smallest K
such that K, € K, and K,, € K.

Section 3.
With the notation of the previous section we now define:

KVK, =K, t-1=Ilem(n—1,m-1)

KAK, =K, r—1=gedin—1, m—1).
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This enables us to make the collection of radical semisimple classes {K,}, n=2, ...,
a lattice. This is clear, for the set {K,}, n=2, ..., is partially ordered by inclusion
and the definitions of \ and A yield a /ub and glb respectively for any two elements
in the set.

Remark. K., in general, is not the set theoretical union of KX, and K,,. For
example, K,V K,=K, for 6=Icm(2, 3). However, Z,€K; but Z,4¢ K, UK,.

Now we consider some of the properties of this lattice. It is clear that the lattice
is not complete, for an arbitrary collection of elements of the lattice does not have
a least upper bound. It is also easy to see that the lattice is not Brouwerian. That
is, for any two elements K, and K,, there does not exist a largest K; such that
K AK.=K,,.

Lemma 4. The lattice of radical semisimple classes is distributive and so modu-
lar too.

Proor. We must show [l, p. 39] that if K,AK,,=K,\K, and K,VK,, =K,V K,
then K,,=K.. That is, if ged(n—1, m—1)=ged(n—1,1—1) and Iem(n—1, m—1)=
=lem(n—1,t—1) then m=1t. By multiplying our assumptions we have

gedin—1,m—Dlem(n—1,m—1) = ged(n—1,t—1)lem(n—1,t—1)

so that (n—1)(m—1)=(n—1)(r—1). Hence m—1=1—1 and m=r.
By definition, and in our notation, an arom of this lattice would be a K|, such
that there does not exist a K,, where K, & K, K.

Lemma 5. K, is an atom in the lattice of radical semisimple classes if and only if
n=23 or n=2* where x is a prime number.

Proor. From Theorem 1 we have K, & K, & K, if and only if F, & F,,& F, and
hence we can work with the F,. It is clear that if F, contains exactly two fields then
F, is an atom. Such is the case with F;={Z,, Z;}. Every F,( F;) where n is odd
necessarily contains F, properly and cannot be an atom. We need only to consider
F, where n is even. If p*—1|n—1 then p*—1 must be odd and hence p* must be
even and so p=2. Thus the only fields in any F, where n is even are of the form
Z,. for some integer x= 1. Consider F,s where f is a prime number. If F,; was not
an element in L then F,,=F, where t—1=Iem(pfi—1) where pfi—1|2° —1.

Since F,s has an even subscript we have from the argument above that p;=2
for all i. Now 2%—1|2°—1 if and only if ;| . But f is prime so #=1 or «=p.
Hence t—1=Ilem(2—1,2°—1)=2%—1 and so t=2f and Fys€ L. Also Fys={Z;, Z,s}
and hence is an atom. Suppose F,, n even, contains a field of the form Z, where 7 is
not prime and let p be a prime divisor of 7. Then, since F, is strongly hereditary,
Zy,€F, and so F,,={Z,, Z,,}& F,. Hence F, cannot be an atom. Hence from
Theorem 1 we have that the atoms are K; and K,, where « is prime.

Summarizing the above results we state

Theorem 3. The set of radical semisimple classes {K,} n=2, ..., determines a
distributive lattice whose atoms are K, and K,. where o is prime.
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