A few observations regarding continuous solutions
of a system of functional equations

By KAROL BARON (Katowice)

The problem of the existence and uniqueness of the continuous solutions of the
system of functional equations

(N @i(x) = hi(x; QLA «os QLA s -3 @A, - Pl fa(X)]),
E=al iy

in wich ¢;,i=1, ..., m, are unknown functions, was investigated by J. KORDYLEWSKI
in [2] in the case where f, is the k-th iterate of a function f, k=1, ..., n, under the
hypothesis that the characteristic roots of a suitable matrix are less than one in
absolute value. Here, we shall give a simpler condition which guarantees the existence
and uniqueness of the continuous solutions of system (1) and we shall show that
under suitable assumptions this unique solution fulfils a Lipschitz condition. More-
over, we shall prove a theorem about the continuous dependence on the given func-
tions for continuous solutions of this system. The proofs will be based on
J. MATKOWSKI's results given in [3].

1. Assume the following hypotheses:

(i) X is a topological space, whereas Y; with the metric g, i=1,..., m, are
complete metric spaces:

() b XX YTX...X Yo=Y, i=l,....m, and f;:X—X, k=], ....n, are con-
tinuous functions. Furthermore,

Qi(hl’(x;."-l.h s Vions oo 3 Vm,1s ---vym,n)s "I(‘t;fl,l’ -"!yl.n: '-';Fm.h ---*.Fm.n)) =

(WF

n
= 2 213:'.;.!‘9;{}’;,&»?1»1‘),
i=1k=
for every xeX and yj,k,fj,,cé’)"f: i,j=1,...,m; k=1,...,n, where a;,;
i,j=1,...,m; k=1, ..., n, are positive constants.
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by V%1, us1+ 051,107 i1 foOr A#p.

»
f,lb§+1.u+1_b:{+l.lb’l',n+1 for A=u

4) ey ={
Xe=bhiuem=1r L= Liaam—%

Theorem 1. Let hypotheses (i) and (ii) be fulfilled and suppose that X is a compact
space. If

(5) 0 < b%;, =1 i A= usm51 =%

where the constants b% ,, x=1, ...,m; A, u=1, ...,m+1—x, are defined by (2)—(4),
then system (1) has exactly one continuous solution ¢;: X ~Y,, i=1, ..., m. This solu-
tion is given by the formula

(6) @i(x) = lim @, ,(x), i=1,..,m x¢X,

Voo

where

(M) @ivi1(¥) = hi(x; 01, LA, - @1 L) 5@ LA, oy @,y [ (X)),
fi=<le viom: vl 260 wEeEX,

and ¢, o is an arbitrary continuous map from X into Y, i=1,...,m.

ProoF. Denote by ; the complete metric space of all continuous functions
¢@:X—Y; with the supremum metric &;, i=1, ..., m, and put

(®) Ti(@r; ...y @) (%) = hi(x5 @[], - @[] -5 QWAL .. @ufa()]),

©;€E€;; iL,Lj=1,..,m x¢€X.
By hypothesis (ii) we have that

T:(€:X... X¥,) c €, B RS
and

(9) di(Ti((Pl’ veey (pm)s TI(@I! sy ‘?m)) = jé;bf,ja}(‘pj’ q_’j)r

Q;, P;€6;; iL,ji=1,...,m,

where b; ;: i, j=1, ..., m, are defined by (2). Thus we may apply Matkowski’s theo-
rem contained in [3] from which we obtain our assertion.

In the next theorem the compactness of X is replaced by the hypothesis

(iii) There exists a sequence {G.} of open sets such that X= U {G,:t=1,2,...},
G.cG,,, and G, is compact, 1=1, 2, ... . Moreover, f,(G,)CG, for k=1, ..., n and
re=d0 e

Namely, we have

Theorem 2. If hypotheses (i)—I(iii) and condition (5) are fulfilled, where the con-
stants b% ,, x=1,....m: i, p=1, ..., m+1—x, are defined by (2)—(4), then system
(1) has exactly one continuous solution ¢;: XY, i=1, ..., m. This solution is given
by (6) and (7), where ¢, , is an arbitrary continuous map from X into Y, i=1,...,m.
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The proof of this theorem is similar to that given in [1], theorem 2.

2. Now, we shall give a theorem regarding a property of the solution just
obtained. Suppose that

(iv) (X, @) is a metric space and (Y, @), i=1,...,m, are complete metric
spaces;

(v) Thefunctionsi;: XX Y{'X... X Yp—=Y,i=1,...,m,and fi: X=X, k=1, ...,n,
fulfil the conditions

Qi(hi(x;yl,lo “'syl,u; "';ym.ls ---’ym,n)a hi(i;fl.lb seny ?l.u; '";fm,l! teey .FHI.H)) =

e

m
=aqo(x, X)+ >
j:

a0V ks ﬁj.kL

[

k

I
[

and
o(fu(x), /(X)) = see(x, X),

for all x,X€X and y;,.7;x€Y;: i,j=1,...,m; k=1, ...,n, where a, a;;, and
Sgs Lj=1,...,m; k=1, ..., n, are positive constants.

Put
n
(10) LT *Z a; i kSks i,j = IS
=1
an ; { C,. for A=p x l
Ciu= 4 Ay b= Ly i,
¢ 1=Cy o Jor d=p
£ Cl1Cistus1FCisr 164 for 4= p
(]2) Cin = N N P * f A= 3
€1,1Ci+1,p+1—Ci+1,1C1,u+21 10X o’ L

e lo.opm=1: Lp=] ...m=%

Theorem 3. Let hypotheses (iv) and (v) be fulfilled and suppose that X is a compact
space. If the constants b} , and ¢ ,, x=1,...,m; i, p=1, ..., m+1—3x, defined by
(2)—(4) and (10)—(12) fulfil conditions (5) and

(13) 1R x=1 ...m id=1, ... m+l—x,

respectively, then system (1) has exactly one continuous solution @;: X =Y, i=1, ..., m.
This solution fulfils a Lipschitz condition.

ProoF. The first part of the above assertion evidently results from theorem 1.
We have still to prove that the solution obtained fulfils a Lipschitz condition.

It follows from (11)—(13) that there exist positive numbers /,, ..., /, and a
3€(0, 1), such that

Zcf.j',' = Sii, iI= l, eeny M
i=1

([3], Lemma). In view of the homogeneity of the above system we may assume that

= [, A0 SRS |
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This means that the system
(l4) af+ Zci.j]j é{,’, £= I,...,m,
j=1

has a positive solution /,, i=1, ..., m. Let %, be the class of all functions @:X Y,
such that

(15) oi(e(x), (X)) = lio(x, %), x,X€X, i=1,..,m,

where /;, i=1, ..., m, are a positive solution of (14). We shall prove that the trans-
formation T, defined by (8) fulfils

(16) T & X ... X2 € T h= N e N

Indeed, suppose that ¢,€.%;, i=1, ..., m, and x, X€X. Applying (8), hypothesis (v),
(15), (10) and (14) we have

Q(Ti( @1y s @) (X), Til( @1 ..., 0,)(X)) =

= aew D+ 3 3 a0 LA o LA®) =

= [ai‘}'jg; f-'f.jfj] e(x, X) = Lo(x, X),

which shows that T;(¢,, ..., ¢,), i=1, ..., m, fulfil condition (15), i.e. (16) holds.
Moreover, condition (9) is fulfilled, where %, and d,, i=1, ..., m, are defined as in
the proof of theorem 1. By Matkowski’s theorem the unique continuous solution
@i XY, i=1,..,m, of system (1) must belong to &, i=1, ..., m, so it fulfils a
Lipschitz condition.

Recalling once more the method of the proof of theorem 2 in [I] we obtain

Theorem 4. If hypotheses (iii)—(v) and conditions (5) and (13) are fulfilled,
where the constants b% , and % ,, »=1,...,m; A, u=1,...,m+1—x, are defined
by (2)—(4) and (10)—(12), respectively, then system (1) has exactly one continuous
solution @;: XY, i=1, ..., m. This solution fulfils a Lipschitz condition.

3. In this section we shall give a theorem on the continuous depedence of con-
tinuous solution of the system (1) on the given functions. To this end consider a se-
quence of the systems of functional equations

(A7) @i(x) = by, (x5 @11, - @1 S, s (]5 -5 @l fa, v (X)]s -5 Pl S, v (X)),

=l [ Pre TLIEE i | N [ R
and assume that
1) Bt X XIER o X=X =1 m and fo i X=X, E=1, .8
v=20,1,2, ..., are continuous functions. Furthermore

Qi(hl,v(x; ."1,1! ---,)’1,.6 °~°;ym,19 ey ym,n)s hl,v(x; .,?l,h ---sfl.n; seny J—’m.h ---9jm.u)) =

m n

= 23 2a,;x0;(¥xs V.00
J=1 k=1 .
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for every xcX and y;,, ¥;.:€Y;; i,j=1,...,m; k=1, ...,n; v=0,1,2, ..., where
a; ;s i,j=1,...,m: k=1, ..., n, are positive constants:

(vii) The sequences {/; ,};=;and { f; ,}s= tend uniformly on every compact set to
hio and f; o, i=1,...,m; k=1, ..., n, respectively.

In the proof of the theorem on the continuous dependence of the continuous
solutions of system (1) we shall use the following

Lemma. Let (X;,0), i=1,...,m, be a complete metric spaces and suppose
that the transformations F; ,: X;X ... X X=X i=1, ...,m; v=0,1,2, ..., fulfil

(]8) ai(Ff,v(xl'! weey xm)s F‘f,\'(fls CERE ] Em)) = !;; bl',jaj{xjsxj)’
xj,ijXj; .i,j= l, ceay TS "=0, 1,2, veny

with positive constants b; ;: i,j=1, ..., m, and

(19) Fio(Xyy o3 X) = M Fy (X3, coes X))y X%;€X55 Hj=1,...,m.
If the constants b% ,, x=1,...,m; ., pu=1, ..., m+1—x, defined by (3) and (4) fulfil
(5), then the system

(20) E SN O T 8 B F= 1.0 vebis2 .

has for every v=0,1, 2, ... exactly one solution x; ,€X,;, i=1,...,m. This solution
is given by
(21) Xy = hm x; ., i=1,....m; v=0,1,2,...

T+ oo

and
(22) Xiv,e+41 = 'Fi,\-(xl.v,t9 e xm,v,t)s i = ls ey VT = 0) ]9 2: seey
where x; , o is an arbitrary element of X;, i=1,...,m; v=0,1,2,.... Moreover,

(23) Xio = ]lm Xi,vs i = l, o | 2

Proof. The existence and uniqueness of solution x; ., i=1, ..., m: v=0,1,2, ...
of system (20) and formula (21) follows from Matkowski’s theorem [3]. We shall show
that (23) holds. Take x;€X;, i=1,...,m, and put x;, ,=x; for every i=1,...,m
and v=0, 1, 2, ... . Next, by (3)—(5), (22) and (19) we may choose a system of posi-
tive numbers ry, ..., r, and a 3€(0, 1) such that

m
(24) Zbi‘jrj.‘—"*_'sr,-, i= l, sviy s
j=1
and
Gi(Xiv,15 Xi,v,0) = 1) T DR LI R | o [ e

(cf. [3], Lemma). By induction, applying (22), (18) and (24) we get

Ol v soni Wi v =0, E=lpa il o= i dean
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This fact, jointly with (21), shows that the sequence
{of(xf.ra xi.o)]:;l'- i = ls ceay M,
is bounded. Let us put
(25) Uiy = O'i(x,'_‘., xl',ﬂ), Uiy = ai(Fi.v(xl.O! L] xm,O.)'! xl’.ﬂ)!

b=nly St cv=-1s2ana

(26) 0501 = Vs Puvest = 200195 OLes g WO Tl Ty £ e AT
j=1

Since the sequence {; ,}i=,, i=1, ..., m, is bounded, we may require that the num-

bers r;, i=1, ..., m, satisfying (24) fulfil also

(27) Uy, =rp, F=T aaimy =0

Taking into account (20), (18), (25), (19) and (26) we obtain

m
(28) ut‘vé- Z’b;.juj,‘,-l-v;.,, f= l,...,m; y = 1,2,...
i=1
and
29) imo,,,.=0, O [RESy | LE T — s Sl
i,v,t

Voo

Recalling (28), (27), (24), (26) and the induction principle we have

Uy = 1+ 01y, ¢ i=1 ,m vwrT=12,...,
thus by (29)
lim u; , = 0, i=1,..,m,

i.e. (23) holds.
Now, we shall prove a theorem on the continuous dependence of the continuous
'solutions of system (1).

Theorem 5. Let hypotheses (iv), (vi) and (vii) be fulfilled and suppose that X is
a compact space. If the constants b5 ,, x=1,...,m; i, p=1, ..., m+1—x, defined
by (2)—(4) fulfil condition (5), then system (17) has for every v=0,1,2, ...
exactly one continuous solution ¢; ,:X—Y, i=1,...,m, and the sequence {@; }i-1
tends to ¢; o, i=1, ..., m, uniformly in X.

PROOF. Let (%, d;), i=1, ..., m, be defined as in the proof of theorem 1, and put
Ti (@1, «os Pm)(X) =
= hy (%3 @1 [A,0 (O], -oes @110, (] -5 @l f1, s (O], s @l o, (X)),
9,€E9; L jm=l,...mp v=O, 1,23 %EX.
It follows from hypothesis (vi) that
T (€, X...X€w) < €, L0 RN T e 2 c i [ S
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and

bf.jdj (@, @)),

AVE

di(Ti,v((Pl! LR (Pﬂi)’ T:'.v((aaly rrey @m)) = -

1

| Ry S
where b; ;: i,j=1, ..., m, are defined by (2). Moreover,
di(Ti,v((pl’ veny qom): Ti.ﬁ((p]_) sany (Pm)) =
= ilelg Qi(hl‘.\'(x; (pl[fl.v(x)]! et | ‘rol[f;l. ‘(X)]; ; ‘pm[ﬁ.i'(x)]! L (Pm[j;.v(x)])v

Q9,6 iL,j=1,...,m; v=0

-

hi, ‘.(X; (pl[j?l.ﬂ(x)]’ b | (Pl[f;a,n(x)]; ; ‘pm[.fl.u(x)]! secy (Pm[f:r,ﬂ(x)])) g P
+5‘E'§’, 0ilhi v (x5 @1 [f1,0(X))s -.os 01110, 0(]; ..o 3 @ulfi 0 (X)) s @l fr, 0 (X)),

hio(%3 @1[f1,0(0 -os @1[F0,0 (5 -3 @l f10(X))s s @l fi,0(X)])

for every ¢;€%;: i,j=1,...,m: v=1,2, ..., so in view of hypotheses (vi), (vii) and
of the compactness of X

Tio(@1s s Q) = lim Ty, (P15 +oes Pu)s @, E(gj; ij=1,..,m
Taking into account these facts and applying the above lemma we obtain our as-

sertion.

It turns out that instead of the compactness of X we may assume that

(viii) There exists a sequence {G,} of open sets such that X=U {G.:t=1,2, ...},
G.cG,,, and G, is compact, T=1, 2, ... . Moreover, f; ,(G)<G, for k=1, ..., n;
eery y=0.1,2, ... and 1=k 2,..0;

Theorem 6. If hypotheses (iv), (vi)—(viii) and condition (5) are fulfilled, where
the constants b% ,, x=1, ...,m; i, u=1, ..., m+1—x, are defined by (2)—(4), then
system (17) has for every v=0, 1, 2, ... exactly one continuous solution ¢; ,:X—~Y,
i=1,...,m, and the sequence {@; )i, tends to @;,, i=1, ..., m, uniformly on
compact subset of X.

This theorem results from theorems 2 and 5, since every compact subset of X is
contained in a G,. '

References

[1] K. Baron, Continuous solutions of a functional equation of n-th order, Aequationes Math.
9 (1973), 257—259.
[2] J. KorpYLEWSKI, On continuous solutions of systems of functional equations, Ann. Polon.

Math. 25 (1971), 53—83.
[3] J. MaTKowskKI, Some inequalities and a generalization of Banach'’s principle, Bull. Acad. Polon.
Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 323—324,

( Received October 30, 1972.)



