A few observations regarding continuous solutions of a system of functional equations

By KAROL BARON (Katowice)

The problem of the existence and uniqueness of the continuous solutions of the system of functional equations

(1)
$$\varphi_i(x) = h_i(x; \varphi_1[f_1(x)], ..., \varphi_1[f_n(x)]; ...; \varphi_m[f_1(x)], ..., \varphi_m[f_n(x)]),$$

 $i = 1, ..., m,$

in wich φ_i , $i=1,\ldots,m$, are unknown functions, was investigated by J. Kordylewski in [2] in the case where f_k is the k-th iterate of a function f, $k=1,\ldots,n$, under the hypothesis that the characteristic roots of a suitable matrix are less than one in absolute value. Here, we shall give a simpler condition which guarantees the existence and uniqueness of the continuous solutions of system (1) and we shall show that under suitable assumptions this unique solution fulfils a Lipschitz condition. Moreover, we shall prove a theorem about the continuous dependence on the given functions for continuous solutions of this system. The proofs will be based on J. Matkowski's results given in [3].

- 1. Assume the following hypotheses:
- (i) X is a topological space, whereas Y_i with the metric Q_i , i=1, ..., m, are complete metric spaces;
- (ii) $h_i: X \times Y_1^n \times ... \times Y_m^n \to Y_i$, i=1, ..., m, and $f_k: X \to X$, k=1, ..., n, are continuous functions. Furthermore,

$$\begin{aligned} \varrho_i \big(h_i(x; y_{1,1}, \dots, y_{1,n}; \dots; y_{m,1}, \dots, y_{m,n}), h_i(x; \bar{y}_{1,1}, \dots, \bar{y}_{1,n}; \dots; \bar{y}_{m,1}, \dots, \bar{y}_{m,n}) \big) &\leq \\ &\leq \sum_{j=1}^m \sum_{k=1}^n a_{i,j,k} \varrho_j(y_{j,k}, \bar{y}_{j,k}), \end{aligned}$$

for every $x \in X$ and $y_{j,k}, \bar{y}_{j,k} \in Y_j$; $i, j=1, \ldots, m$; $k=1, \ldots, n$, where $a_{i,j,k}$; $i, j=1, \ldots, m$; $k=1, \ldots, n$, are positive constants. Write

(2)
$$b_{i,j} = \sum_{k=1}^{n} a_{i,j,k}, \quad i,j = 1, ..., m,$$

(3)
$$b_{\lambda,\mu}^{1} = \begin{cases} b_{\lambda,\mu} & \text{for } \lambda \neq \mu \\ 1 - b_{\lambda,\mu} & \text{for } \lambda = \mu \end{cases}; \quad \lambda, \mu = 1, ..., m,$$

186 K. Baron

(4)
$$b_{\lambda,\mu}^{\varkappa+1} = \begin{cases} b_{1,1}^{\varkappa} b_{\lambda+1,\mu+1}^{\varkappa} + b_{\lambda+1,1}^{\varkappa} b_{1,\mu+1}^{\varkappa} & \text{for } \lambda \neq \mu \\ b_{1,1}^{\varkappa} b_{\lambda+1,\mu+1}^{\varkappa} - b_{\lambda+1,1}^{\varkappa} b_{1,\mu+1}^{\varkappa} & \text{for } \lambda = \mu \end{cases};$$

$$\varkappa = 1, \dots, m-1; \quad \lambda, \mu = 1, \dots, m-\varkappa.$$

Theorem 1. Let hypotheses (i) and (ii) be fulfilled and suppose that X is a compact space. If

(5)
$$0 < b_{\lambda,\lambda}^{\varkappa}, \quad \varkappa = 1, ..., m; \ \lambda = 1, ..., m+1-\varkappa,$$

where the constants $b_{\lambda,\mu}^{\varkappa}$, $\varkappa=1,\ldots,m$; $\lambda,\mu=1,\ldots,m+1-\varkappa$, are defined by (2)—(4), then system (1) has exactly one continuous solution $\varphi_i:X\to Y_i,\ i=1,\ldots,m$. This solution is given by the formula

(6)
$$\varphi_i(x) = \lim_{v \to \infty} \varphi_{i,v}(x), \qquad i = 1, ..., m, \quad x \in X,$$

where

(7)
$$\varphi_{i,v+1}(x) = h_i(x; \varphi_{1,v}[f_1(x)], ..., \varphi_{1,v}[f_n(x)]; ...; \varphi_{m,v}[f_1(x)], ..., \varphi_{m,v}[f_n(x)]),$$

 $i = 1, ..., m, v = 0, 1, 2, ..., x \in X,$

and $\varphi_{i,0}$ is an arbitrary continuous map from X into Y_i , $i=1,\ldots,m$.

PROOF. Denote by \mathscr{C}_i the complete metric space of all continuous functions $\varphi: X \to Y_i$ with the supremum metric d_i , i = 1, ..., m, and put

(8)
$$T_i(\varphi_1, ..., \varphi_m)(x) = h_i(x; \varphi_1[f_1(x)], ..., \varphi_1[f_n(x)]; ...; \varphi_m[f_1(x)], ..., \varphi_m[f_n(x)]),$$

$$\varphi_i \in \mathcal{C}_i$$
; $i, j = 1, ..., m, x \in X$.

By hypothesis (ii) we have that

$$T_i(\mathscr{C}_1 \times ... \times \mathscr{C}_m) \subset \mathscr{C}_i, \quad i = 1, ..., m$$

and

(9)
$$d_i(T_i(\varphi_1, ..., \varphi_m), T_i(\overline{\varphi}_1, ..., \overline{\varphi}_m)) \leq \sum_{j=1}^m b_{i,j} d_j(\varphi_j, \overline{\varphi}_j),$$
$$\varphi_j, \overline{\varphi}_j \in \mathscr{C}_j; \quad i, j = 1, ..., m,$$

where $b_{i,j}$; i, j=1, ..., m, are defined by (2). Thus we may apply Matkowski's theorem contained in [3] from which we obtain our assertion.

In the next theorem the compactness of X is replaced by the hypothesis

(iii) There exists a sequence $\{G_{\tau}\}$ of open sets such that $X = \bigcup \{G_{\tau}: \tau = 1, 2, ...\}$, $G_{\tau} \subset G_{\tau+1}$ and \overline{G}_{τ} is compact, $\tau = 1, 2, ...$. Moreover, $f_k(G_{\tau}) \subset G_{\tau}$ for k = 1, ..., n and $\tau = 1, 2, ...$.

Namely, we have

Theorem 2. If hypotheses (i)—(iii) and condition (5) are fulfilled, where the constants $b_{\lambda,\mu}^{\varkappa}$, $\varkappa=1,\ldots,m$; $\lambda,\mu=1,\ldots,m+1-\varkappa$, are defined by (2)—(4), then system (1) has exactly one continuous solution $\varphi_i\colon X\to Y_i,\ i=1,\ldots,m$. This solution is given by (6) and (7), where $\varphi_{i,0}$ is an arbitrary continuous map from X into $Y_i,\ i=1,\ldots,m$.

The proof of this theorem is similar to that given in [1], theorem 2.

2. Now, we shall give a theorem regarding a property of the solution just obtained. Suppose that

(iv) (X, ϱ) is a metric space and (Y_i, ϱ_i) , i=1, ..., m, are complete metric

spaces;

(v) The functions $h_i: X \times Y_1^n \times ... \times Y_m^n \to Y_i$, i = 1, ..., m, and $f_k: X \to X$, k = 1, ..., n, fulfil the conditions

$$\varrho_i\big(h_i(x;y_{1,1},\,\ldots,\,y_{1,n};\,\ldots;\,y_{m,1},\,\ldots,\,y_{m,n}),\,h_i(\bar{x}\,;\,\bar{y}_{1,1},\,\ldots,\,\bar{y}_{1,n};\,\ldots;\,\bar{y}_{m,1},\,\ldots,\,\bar{y}_{m,n})\big) \leq$$

$$\leq a_i \varrho(x, \bar{x}) + \sum_{j=1}^{m} \sum_{k=1}^{n} a_{i,j,k} \varrho_j(y_{j,k}, \bar{y}_{j,k}),$$

and

$$\varrho(f_k(x), f_k(\bar{x})) \leq s_k \varrho(x, \bar{x}),$$

for all $x, \bar{x} \in X$ and $y_{j,k}, \bar{y}_{j,k} \in Y_j$; i, j = 1, ..., m; k = 1, ..., n, where $a_i, a_{i,j,k}$ and s_k ; i, j = 1, ..., m; k = 1, ..., n, are positive constants.

(10)
$$c_{i,j} = \sum_{k=1}^{n} a_{i,j,k} s_k, \qquad i, j = 1, ..., m,$$

(11)
$$c_{\lambda,\mu}^{1} = \begin{cases} c_{\lambda,\mu} & \text{for } \lambda \neq \mu \\ 1 - c_{\lambda,\mu} & \text{for } \lambda = \mu \end{cases}; \quad \lambda, \mu = 1, ..., m,$$

(12)
$$c_{\lambda,\mu}^{\varkappa+1} = \begin{cases} c_{1,1}^{\varkappa} c_{\lambda+1,\mu+1}^{\varkappa} + c_{\lambda+1,1}^{\varkappa} c_{1,\mu+1}^{\varkappa} & \text{for } \lambda \neq \mu \\ c_{1,1}^{\varkappa} c_{\lambda+1,\mu+1}^{\varkappa} - c_{\lambda+1,1}^{\varkappa} c_{1,\mu+1}^{\varkappa} & \text{for } \lambda = \mu \end{cases};$$

$$\varkappa = 1, \dots, m-1; \quad \lambda, \mu = 1, \dots, m-\varkappa.$$

Theorem 3. Let hypotheses (iv) and (v) be fulfilled and suppose that X is a compact space. If the constants $b_{\lambda,\mu}^{\varkappa}$ and $c_{\lambda,\mu}^{\varkappa}$, $\varkappa=1,\ldots,m;$ $\lambda,\mu=1,\ldots,m+1-\varkappa$, defined by (2)—(4) and (10)—(12) fulfil conditions (5) and

(13)
$$0 < c_{\lambda,\lambda}^{\varkappa}, \quad \varkappa = 1, ..., m; \quad \lambda = 1, ..., m+1-\varkappa,$$

respectively, then system (1) has exactly one continuous solution $\varphi_i: X \to Y_i$, i = 1, ..., m. This solution fulfils a Lipschitz condition.

PROOF. The first part of the above assertion evidently results from theorem 1. We have still to prove that the solution obtained fulfils a Lipschitz condition.

It follows from (11)—(13) that there exist positive numbers $l_1, ..., l_m$ and a $9 \in (0, 1)$, such that

$$\sum_{i=1}^{m} c_{i,j} l_j \leq \vartheta l_i, \qquad i = 1, ..., m$$

([3], Lemma). In view of the homogeneity of the above system we may assume that

$$\frac{a_i}{1-9} \leq l_i, \qquad i=1,...,m.$$

188 K. Baron

This means that the system

(14)
$$a_i + \sum_{j=1}^m c_{i,j} l_j \leq l_i, \qquad i = 1, ..., m,$$

has a positive solution l_i , i=1, ..., m. Let \mathcal{L}_i be the class of all functions $\varphi: X \to Y_i$ such that

(15)
$$\varrho_i(\varphi(x), \varphi(\bar{x})) \leq l_i \varrho(x, \bar{x}), \quad x, \bar{x} \in X, \quad i = 1, ..., m,$$

where l_i , i=1, ..., m, are a positive solution of (14). We shall prove that the transformation T_i defined by (8) fulfils

(16)
$$T_i(\mathcal{L}_1 \times ... \times \mathcal{L}_m) \subset \mathcal{L}_i, \quad i = 1, ..., m.$$

Indeed, suppose that $\varphi_i \in \mathcal{L}_i$, i = 1, ..., m, and $x, \bar{x} \in X$. Applying (8), hypothesis (v), (15), (10) and (14) we have

$$\varrho_{i}(T_{i}(\varphi_{1}, ..., \varphi_{m})(x), T_{i}(\varphi_{1}, ..., \varphi_{m})(\bar{x})) \leq
\leq a_{i}\varrho(x, \bar{x}) + \sum_{j=1}^{m} \sum_{k=1}^{n} a_{i,j,k}\varrho_{j}(\varphi_{j}[f_{k}(x)], \varphi_{j}[f_{k}(\bar{x})]) \leq
\leq \left(a_{i} + \sum_{j=1}^{m} c_{i,j}l_{j}\right)\varrho(x, \bar{x}) \leq l_{i}\varrho(x, \bar{x}),$$

which shows that $T_i(\varphi_1, ..., \varphi_m)$, i=1, ..., m, fulfil condition (15), i.e. (16) holds. Moreover, condition (9) is fulfilled, where \mathscr{C}_i and d_i , i=1, ..., m, are defined as in the proof of theorem 1. By Matkowski's theorem the unique continuous solution $\varphi_i: X \to Y_i$, i=1, ..., m, of system (1) must belong to \mathscr{L}_i , i=1, ..., m, so it fulfils a Lipschitz condition.

Recalling once more the method of the proof of theorem 2 in [1] we obtain

Theorem 4. If hypotheses (iii)—(v) and conditions (5) and (13) are fulfilled, where the constants $b_{\lambda,\mu}^{\varkappa}$ and $c_{\lambda,\mu}^{\varkappa}$, $\varkappa=1,\ldots,m$; $\lambda,\mu=1,\ldots,m+1-\varkappa$, are defined by (2)—(4) and (10)—(12), respectively, then system (1) has exactly one continuous solution $\varphi_i: X \to Y_i$, $i=1,\ldots,m$. This solution fulfils a Lipschitz condition.

3. In this section we shall give a theorem on the continuous depedence of continuous solution of the system (1) on the given functions. To this end consider a sequence of the systems of functional equations

(17)
$$\varphi_i(x) = h_{i,v}(x; \varphi_1[f_{1,v}(x)], ..., \varphi_1[f_{n,v}(x)]; ...; \varphi_m[f_{1,v}(x)], ..., \varphi_m[f_{n,v}(x)]),$$

 $i = 1, ..., m; \quad v = 0, 1, 2, ...$

and assume that

(vi) $h_{i,v}: X \times Y_1^n \times ... \times Y_m^n \to Y_i$, i = 1, ..., m, and $f_{k,v}: X \to X$, k = 1, ..., n; v = 0, 1, 2, ..., are continuous functions. Furthermore

$$\varrho_i\big(h_{i,\,v}(x;\,y_{1,\,1},\,\ldots,\,y_{1,\,n};\,\ldots;\,y_{m,\,1},\,\ldots,\,y_{m,\,n}),\;h_{i,\,v}(x;\,\bar{y}_{1,\,1},\,\ldots,\,\bar{y}_{1,\,n};\,\ldots;\,\bar{y}_{m,\,1},\,\ldots,\,\bar{y}_{m,\,n})\big) \leq$$

$$\leq \sum_{j=1}^{m} \sum_{k=1}^{n} a_{i,j,k} \varrho_{j}(y_{j,k}, \bar{y}_{j,k}),$$

for every $x \in X$ and $y_{j,k}, \bar{y}_{j,k} \in Y_j$; i, j = 1, ..., m; k = 1, ..., n; v = 0, 1, 2, ..., where $a_{i,j,k}$; i, j = 1, ..., m; k = 1, ..., n, are positive constants;

(vii) The sequences $\{h_{i,\nu}\}_{\nu=1}^{\infty}$ and $\{f_{k,\nu}\}_{\nu=1}^{\infty}$ tend uniformly on every compact set to

 $h_{i,0}$ and $f_{k,0}$, i=1,...,m; k=1,...,n, respectively.

In the proof of the theorem on the continuous dependence of the continuous solutions of system (1) we shall use the following

Lemma. Let (X_i, σ_i) , i=1, ..., m, be a complete metric spaces and suppose that the transformations $F_{i,v}: X_1 \times ... \times X_m \rightarrow X_i$, i=1, ..., m; v=0, 1, 2, ..., fulfil

(18)
$$\sigma_{i}(F_{i,v}(x_{1},...,x_{m}), F_{i,v}(\bar{x}_{1},...,\bar{x}_{m})) \leq \sum_{j=1}^{m} b_{i,j}\sigma_{j}(x_{j},\bar{x}_{j}),$$
$$x_{j}, \bar{x}_{j} \in X_{j}; \quad i, j = 1,..., m; \quad v = 0, 1, 2, ...,$$

with positive constants $b_{i,j}$; i, j=1, ..., m, and

(19)
$$F_{i,0}(x_1, \ldots, x_m) = \lim_{\substack{v \to \infty}} F_{i,v}(x_1, \ldots, x_m), \quad x_j \in X_j; \quad i, j = 1, \ldots, m.$$

If the constants $b_{\lambda,\mu}^{\kappa}$, $\kappa=1,\ldots,m$; $\lambda,\mu=1,\ldots,m+1-\kappa$, defined by (3) and (4) fulfil (5), then the system

(20)
$$x_i = F_{i,\nu}(x_1, ..., x_m), \quad i = 1, ..., m; \quad \nu = 0, 1, 2, ...,$$

has for every v=0, 1, 2, ... exactly one solution $x_{i,v} \in X_i$, i=1, ..., m. This solution is given by

(21)
$$x_{i,\nu} = \lim_{\tau \to \infty} x_{i,\nu,\tau}, \quad i = 1, ..., m; \quad \nu = 0, 1, 2, ...$$

and

(22)
$$x_{i,v,\tau+1} = F_{i,v}(x_{1,v,\tau}, ..., x_{m,v,\tau}), i = 1, ..., m; v, \tau = 0, 1, 2, ...,$$

where $x_{i,v,0}$ is an arbitrary element of X_i , $i=1,\ldots,m$; $v=0,1,2,\ldots$. Moreover,

(23)
$$x_{i,0} = \lim_{v \to \infty} x_{i,v}, \qquad i = 1, ..., m.$$

PROOF. The existence and uniqueness of solution $x_{i,v}$, i=1, ..., m; v=0, 1, 2, ... of system (20) and formula (21) follows from Matkowski's theorem [3]. We shall show that (23) holds. Take $x_i \in X_i$, i=1, ..., m, and put $x_{i,v,0}=x_i$ for every i=1, ..., m and v=0, 1, 2, ... Next, by (3)—(5), (22) and (19) we may choose a system of positive numbers $r_1, ..., r_m$ and a $\vartheta \in (0, 1)$ such that

(24)
$$\sum_{j=1}^{m} b_{i,j} r_{j} \leq \vartheta r_{i}, \qquad i = 1, ..., m,$$

and

$$\sigma_i(x_{i,v,1}, x_{i,v,0}) \le r_i$$
, $i = 1, ..., m$; $v = 0, 1, 2, ...$

(cf. [3], Lemma). By induction, applying (22), (18) and (24) we get

$$\sigma_i(x_{i,v,\tau+1}, x_{i,v,\tau}) \leq \vartheta^{\tau} r_i, \quad i = 1, ..., m; \quad v, \tau = 0, 1, 2, ...$$

190 K. Baron

This fact, jointly with (21), shows that the sequence

$$\{\sigma_i(x_{i,v}, x_{i,0})\}_{v=1}^{\infty}, \quad i=1,...,m,$$

is bounded. Let us put

(25)
$$u_{i,v} = \sigma_i(x_{i,v}, x_{i,0}), \quad v_{i,v} = \sigma_i(F_{i,v}(x_{1,0}, ..., x_{m,0}), x_{i,0}),$$
$$i = 1, ..., m; \quad v = 1, 2, ...,$$

(26)
$$v_{i,\nu,1} = v_{i,\nu}, \quad v_{i,\nu,\tau+1} = \sum_{i=1}^{m} b_{i,j} v_{j,\nu,\tau} + v_{i,\nu}, \qquad i = 1, ..., m; \quad \nu, \tau = 1, 2,$$

Since the sequence $\{u_{i,v}\}_{v=1}^{\infty}$, $i=1,\ldots,m$, is bounded, we may require that the numbers r_i , $i=1,\ldots,m$, satisfying (24) fulfil also

(27)
$$u_{i,v} \leq r_i, \quad i = 1, ..., m; \quad v = 1, 2,$$

Taking into account (20), (18), (25), (19) and (26) we obtain

(28)
$$u_{i,\nu} \leq \sum_{j=1}^{m} b_{i,j} u_{j,\nu} + v_{i,\nu}, \qquad i = 1, ..., m; \quad \nu = 1, 2, ...$$

and

(29)
$$\lim_{v \to \infty} v_{i,v,\tau} = 0, \qquad i = 1, ..., m; \quad \tau = 1, 2,$$

Recalling (28), (27), (24), (26) and the induction principle we have

thus by (29)
$$u_{i,v} \leq \vartheta^{\tau} r_i + v_{i,v,\tau}, \qquad i = 1, ..., m; \quad v, \tau = 1, 2, ...,$$

$$\lim_{v \to \infty} u_{i,v} = 0, \qquad i = 1, ..., m,$$

i.e. (23) holds.

Now, we shall prove a theorem on the continuous dependence of the continuous solutions of system (1).

Theorem 5. Let hypotheses (iv), (vi) and (vii) be fulfilled and suppose that X is a compact space. If the constants $b_{\lambda,\mu}^{\times}$, $\varkappa=1,\ldots,m$; $\lambda,\mu=1,\ldots,m+1-\varkappa$, defined by (2)—(4) fulfil condition (5), then system (17) has for every $v=0,1,2,\ldots$ exactly one continuous solution $\varphi_{i,v}:X\to Y_i$, $i=1,\ldots,m$, and the sequence $\{\varphi_{i,v}\}_{v=1}^{\infty}$ tends to $\varphi_{i,0}$, $i=1,\ldots,m$, uniformly in X.

PROOF. Let (\mathcal{C}_i, d_i) , i = 1, ..., m, be defined as in the proof of theorem 1, and put

$$T_{i,v}(\varphi_1, ..., \varphi_m)(x) =$$

$$= h_{i,v}(x; \varphi_1[f_{1,v}(x)], ..., \varphi_1[f_{n,v}(x)]; ...; \varphi_m[f_{1,v}(x)], ..., \varphi_m[f_{n,v}(x)]),$$

$$\varphi_j \in \mathscr{C}_j; \quad i, j = 1, ..., m; \quad v = 0, 1, 2, ...; \quad x \in X.$$

It follows from hypothesis (vi) that

$$T_{i,v}(\mathscr{C}_1 \times ... \times \mathscr{C}_m) \subset \mathscr{C}_i, \quad i = 1, ..., m; \quad v = 0, 1, 2, ...$$

and

$$d_{i}(T_{i,v}(\varphi_{1},...,\varphi_{m}), T_{i,v}(\bar{\varphi}_{1},...,\bar{\varphi}_{m})) \leq \sum_{j=1}^{m} b_{i,j}d_{j}(\varphi_{j},\bar{\varphi}_{j}),$$

$$\varphi_{i}, \bar{\varphi}_{i} \in \mathscr{C}_{i}; \quad i,j = 1,...,m; \quad v = 0, 1, 2,...,$$

where $b_{i,j}$; i, j=1, ..., m, are defined by (2). Moreover,

$$d_{i}(T_{i,\nu}(\varphi_{1},...,\varphi_{m}), T_{i,0}(\varphi_{1},...,\varphi_{m})) \leq$$

$$\leq \sup_{x \in X} \varrho_{i}(h_{i,\nu}(x;\varphi_{1}[f_{1,\nu}(x)],...,\varphi_{1}[f_{n,\nu}(x)];...;\varphi_{m}[f_{1,\nu}(x)],...,\varphi_{m}[f_{n,\nu}(x)]),$$

$$h_{i,\nu}(x;\varphi_{1}[f_{1,0}(x)],...,\varphi_{1}[f_{n,0}(x)];...;\varphi_{m}[f_{1,0}(x)],...,\varphi_{m}[f_{n,0}(x)])) +$$

$$+ \sup_{x \in X} \varrho_{i}(h_{i,\nu}(x;\varphi_{1}[f_{1,0}(x)],...,\varphi_{1}[f_{n,0}(x)];...;\varphi_{m}[f_{1,0}(x)],...,\varphi_{m}[f_{n,0}(x)]),$$

$$h_{i,0}(x;\varphi_{1}[f_{1,0}(x)],...,\varphi_{1}[f_{n,0}(x)];...;\varphi_{m}[f_{1,0}(x)],...,\varphi_{m}[f_{n,0}(x)]))$$

for every $\varphi_j \in \mathscr{C}_j$; i, j = 1, ..., m; v = 1, 2, ..., so in view of hypotheses (vi), (vii) and of the compactness of X

$$T_{i,0}(\varphi_1, ..., \varphi_m) = \lim_{\substack{v \to \infty \\ v \to \infty}} T_{i,v}(\varphi_1, ..., \varphi_m), \qquad \varphi_j \in \mathscr{C}_j; \quad i, j = 1, ..., m.$$

Taking into account these facts and applying the above lemma we obtain our assertion.

It turns out that instead of the compactness of X we may assume that (viii) There exists a sequence $\{G_{\tau}\}$ of open sets such that $X = \bigcup \{G_{\tau} : \tau = 1, 2, ...\}$, $G_{\tau} \subset G_{\tau+1}$ and \overline{G}_{τ} is compact, $\tau = 1, 2, ...$. Moreover, $f_{k, \nu}(G_{\tau}) \subset G_{\tau}$ for k = 1, ..., n; every $\nu = 0, 1, 2, ...$ and $\tau = 1, 2, ...$.

Theorem 6. If hypotheses (iv), (vi)—(viii) and condition (5) are fulfilled, where the constants $b_{\lambda,\mu}^{\varkappa}$, $\varkappa=1,\ldots,m$; $\lambda,\mu=1,\ldots,m+1-\varkappa$, are defined by (2)—(4), then system (17) has for every $v=0,1,2,\ldots$ exactly one continuous solution $\varphi_{i,v}:X\to Y_i$, $i=1,\ldots,m$, and the sequence $\{\varphi_{i,v}\}_{v=1}^{\infty}$ tends to $\varphi_{i,0}$, $i=1,\ldots,m$, uniformly on compact subset of X.

This theorem results from theorems 2 and 5, since every compact subset of X is contained in a G_{τ} .

References

- [1] K. BARON, Continuous solutions of a functional equation of n-th order, Aequationes Math. 9 (1973), 257—259.
- [2] J. KORDYLEWSKI, On continuous solutions of systems of functional equations, Ann. Polon. Math. 25 (1971), 53—83.
- [3] J. MATKOWSKI, Some inequalities and a generalization of Banach's principle, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 323—324.

(Received October 30, 1972.)