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Existence and uniqueness of measure valued
solutions for Zakai equation

By N. U. AHMED (Ottawa)

Abstract. In this paper we discuss the question of existence and uniqueness of
measure valued solutions for Zakai equation. In recent papers [Ref 1, Ref 2] this question
has been discussed for Zakai equation under the assumption that the corresponding
measure valued process is absolutely continuous with respect to the invariant measure of
the associated linear stochastic differential equation. This holds if the measure induced
by the initial condition is absolutely continuous with respect to the invariant measure
as mentioned above. In this paper we remove this restriction.

2 ≡ 3 (mod 4)

1. Introduction

We give a brief introduction to the filtering problem leading to the Za-
kai equation. The process to be filtered is governed by a class of semilinear
stochastic differential equations given by

(1.1)
dx = Axdt + F (x)dt +

√
QdW

x(0) = x0,

in a separable Hilbert space H. The observation process is governed by a
stochastic differential equation in a finite dimensional space say Rd given
by

(1.2)
dy = h(x, y)dt + σ0(y)dw0

y(0) = 0.

Here x is the process (not observable) taking values in an infinite dimen-
sional Hilbert space, and y is the observed process taking values in a finite
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dimensional space. Finite dimensionality of observation is most natural in
all applications.

The general problem of filtering is to find the best unbiased mean
square estimate of a functional of the process x(t) given the history of
the observed process y up to time t, t ≥ 0. Let (Ω,F ,Ft ↑, P ) denote
a filtered probability space and Fy

t ≡ σ{y(s), s ≤ t} denote the smallest
sigma algebra generated by the observed process y up to time t, t ≥ 0. Let
φ : H → R be any continuous bounded function. The filtering problem
as stated above can then be restated as follows: Find an Fy

t measurable
process {η(t), t ≥ 0}, such that

E{(η(t)− φ(x(t))2|Fy
t } = min for all t ∈ I ≡ [0, T ].

It is well known that the best filter is given by

(1.3)
η0(t) = E{φ(x(t))|Fy

t }

=
∫

H

φ(ξ)Qy
t (dξ) ≡ Qy

t (φ),

where

(1.4) Qy
t (χΓ) = P{x(t) ∈ Γ|Fy

t }
for Γ ∈ ΣH with ΣH denoting the σ-algebra of Borel subsets of H. This
suggests that we must find the conditional probability measure Qy

t which
is an Fy

t adapted (probability) measure valued stochastic process.
It is known [1,2,7] that Qy

t satisfies the Kushner equation (in the weak
sense)

(1.5)
dQy

t (φ) = Qy
t (Aφ)dt + 〈Qy

t (φh)−Qy
t (φ)Qy

t (h), dz(t)〉,

z(t) = y(t)−
∫ t

0

Qy
s(h)ds, Qy

0(φ) = Π0(φ)

where A is the differential generator of the Markov process x related to
the operators A, F and Q, Π0 is the measure on H induced by the initial
state x0 and the process z, called the innovation process, is a standard
Brownian motion in Rd. Clearly this system is a nonlinear stochastic
PDE in an infinite dimensional space.

It was shown by Zakai [Ref 9] that this equation can be simplified to
a linear stochastic evolution equation. In general, the solution ofthis equa-
tion is a measure valued process and is related to the solution of Kushner
equation (1.5) as follows: for any bounded Borel measurable function φ
on H

Qy
t (φ) ≡ µy

t (φ)/µy
t (1), t ≥ 0.
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The measure valued process process µy
t is governed by the stochastic dif-

ferential equation

(1.6)
dµt(φ) = µt(Aφ)dt + 〈µt(φh),Γ−1/2

0 dv〉,
µ0(φ) = Π0(φ), φ ∈ D(A), Γ0 ≡ σ0σ

∗
0 ,

where v is a standard Brownian motion in Rd in a suitable probability
space (Ω,F , F̃t ↑, P̃ ) [see Ref 2]. This is the unnormalized measure valued
process. Our main objective in this paper is to prove the existence and
uniqueness of solution of this equation without assuming that Π0 ≺ µ0 or
that it has a density.

Note that equations (1.5) and (1.6) are derived under the assumption
that the system noise W is uncorrelated with the measurement noise w0.
A more general equation is given by

(1.7)
dµt(φ) = µt(Aφ)dt + 〈µt(G(t)φ), dv〉,

µ0(φ) = ν0(φ), φ ∈ D(A),

where the measure ν0(K) ≡ P̃{x0 ∈ K|Fy
0 },K ∈ ΣH and G(t) is either

a bounded or an unbounded operator valued F̃t adapted random process.
This is the case when either one or both the coefficients h and σ0 of the
measurement dynamics (1.2) are dependent on y. If, however, both are
independent of y the operator G is deterministic. For simplicity of presen-
tation only, we use this assumption throughout the the rest of the paper.

2. Markov semigroup

Since the process {x(t), t ≥ 0, } solving equation (1.1) is Markov it
follows from Fokker-Planck equation that the corresponding conditional
probability measure P (t, x,G), x ∈ H, t ≥ 0, G ∈ ΣH , defines a semigroup
Pt, t ≥ 0, given by

(Ptφ)(x) ≡
∫

H

φ(y)P (t, x, dy),

on the space of bounded Borel measurable functions on H, denoted by
B(ΣH). The space B(ΣH) with its natural norm topology given by

‖f‖0 ≡ sup{|f(x)|, x ∈ H}
is a Banach space. It is clear that the semigroup Pt, t ≥ 0, is a contrac-
tion, however it is not strongly continuous on B(ΣH) in its natural norm
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topology. In a recent paper [Ref 4] Da-Prato-Zabczyk gave a construc-
tion of a C0-semigroup S(t), t ≥ 0, on the Hilbert space L2(H, µ0), which
is an extension of the Markov semigroup Pt, t ≥ 0. The measure µ0 is a
symmetric Gaussian measure on H. This is based on several assumptions
as presented below:

(H1):
(a): A is the infinitesimal generator of a C0-semigroup, T (t), t ≥ 0 in

H satisfying

‖T (t)‖L(H) ≤ Me−ωt, t ≥ 0, ω > 0, M ≥ 1

(b): Q is a positive, symmetric, bounded operator in H so that the
operator Qt given by

Qtx ≡
∫ t

0

T (s)QT ∗(s)xds, x ∈ H, t ≥ 0,

is nuclear for all t ≥ 0 and Supt≥0 TrQt < ∞.
(c): W is a cylindrical Wiener process with values in H with

CovW (1) = I.
(H2): F is a bounded Lipschitz mapping from H to H.
(H3): For all t ≥ 0, ImT (t) ⊂ Im(Q1/2

t ).
(H4): The operator valued function Γ(t) ≡ (Q−1/2

t T (t)), t ≥ 0, is
Laplace transformable where Q

−1/2
t is the pseudo inverse of Q

1/2
t .

Let Dφ and D2φ denote the first and second Fréchet derivatives of
the function φ : H → R1, whenever they exist as elements of H and L(H).
Define the operator A0 and A by

A0φ ≡ (1/2)Tr(QD2φ) + (x,A∗Dφ), x ∈ H

and

D(A0) ≡{φ ∈ C2
b (H) : D2φ ∈ L1(H),

Supx∈H ‖D2φ‖L1(H) < ∞,

∃ψ ∈ C2
b (H) : φ(x) = ψ(A−1x), x ∈ H},

F̃φ ≡ 〈F (.), Dφ(.)〉, φ ∈ W 1,2(H,µ0) and

A ≡ (Ā0 + F̃), D(A) = D(Ā0),

where L1(H) is the space of nuclear operators in H and Ck
b (H) is the space

of bounded k-times Fréchet differentiable functions on H and W 1,2(H, µ0)
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is the Sobolev space determined by the completion of C1(H) with respect
to the norm topology given by

‖φ‖2W 1,2(H) ≡
∫

H

(|φ|2 + ‖Q1/2Dφ‖2)µ0(dx)

with µ0 being the invariant measure as mentioned earlier. We consider the
semigroup S(t), t ≥ 0, corresponding to the Kolmogorov operator associ-
ated with the nonlinear stochastic evolution equation (1.1). The following
result is due to Da Prato and Zabczyk [Ref 4] which played a significant
role in the papers [Ref 1, Ref 2].

Theorem 2.1. Suppose the assumptions (H1)–(H4) hold. Then
(a): the linear version of (1.1), with F = 0, has a unique invariant

Gaussian measure µ0 on ΣH .
(b): the operator A generates a C0-semigroup of bounded linear op-

erators, S(t), t ≥ 0, in L2(H,µ0) and it is the extension of the original
Markov transition operator, Pt, t ≥ 0, from B(ΣH) to L2(H, µ0).

(c): Further D(A) ⊂ W 1,2(H, µ0) and for t > 0, S(t) is a family of
compact operators in L2(H, µ0).

Now we consider the Zakai equation (1.7).

Definition 2.2. An Fy
t adapted measure valued random process

{µt, t ∈ I} is said to be a mild solution of the Zakai equation (1.7) if
it satisfies the stochastic integral equation

(2.1) µt(φ) = ν0(S(t)φ) +
∫ t

0

〈µs(GS(t− s)φ), dv(s)〉,

where S(t), t ≥ 0, is the semigroup as given by Theorem 2.1.

Formally, for any φ ∈ D(A), using Ito-differential and the C0-property
of the semigroup S equation (1.7) follows from equation (2.1). Writing
equation (1.7) as the evolution equation

dµt = A∗µtdt + G∗µtdv(t)

and using the variation of constants formula involving the adjoint semi-
group S∗(t), t ≥ 0, equation (2.1) follows from (1.7). This justifies the
above definition.

As mentioned in the previous section, we wish to prove the existence
and uniqueness of solution of this integral equation without the assumption
on absolute continuity of ν0 with respect to the invariant measure µ0. For
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existence and uniqueness results based on the later assumption the reader
is referred to [Ref. 1, Ref. 2]. Uniqueness result for finite dimensional
case was also proved by Rozovskii [8] following a different method. The
argument is that the natural space where one should look for solutions of
such equations is a suitable space of (random) measures and not L2(H,µ0).
This is precisely what we are interested in. This will require that we
sacrifice the C0-property and revert back to the restriction of S to the
space of bounded scalar valued functions on H. However we continue to
use the same notation for the restriction. In general our approach also
admits the initial measure ν0 to be a random variable taking values from
the space of finitely additive measures. We shall use the theory of vector
measures.

3. Vector measures

Let X denote a topological Hausdorff space and let FX denote a field
of subsets of the set X and Z a Banach space.

Definition 3.1. A function µ : FX 7→ Z is called a finitely additive
vector measure if for each pair of disjoint sets K1,K2 ∈ FX , µ(K1 ∪K2) =
µ(K1) + µ(K2) and it is said to be countably additive if for any disjoint
sequence {Ki} ∈ FX , for which

⋃
Ki ∈ FX , µ(

⋃
Ki) =

∑
i≥1 µ(Ki) in the

norm topology of Z.

Definition 3.2. A vector measure µ : FX 7→ Z is said to be strongly
additive if for every sequence of pairwise disjoint members {Kj} ∈ FX ,
the series

∑
j≥1 µ(Kj) converges in the norm topology of Z.

Definition 3.3. (a): A vector measure µ : FX 7→ Z is said to be of
bounded variation if for each Γ ∈ FX , |µ|(Γ) < ∞ where

|µ|(Γ) ≡ supπ

∑

K∈π

‖µ(K)‖Z

with the supremum taken over all partitions π of the set Γ into a finite
number of disjoint members of FX . (b): The vector measure is said to be
of bounded semivariation if for each Γ ∈ FX ,

‖µ‖(Γ) ≡ sup{|z∗µ|(Γ) : z∗ ∈ Z∗, ‖z∗‖ ≤ 1} < ∞,

where Z∗ is the dual of Z and |z∗µ|(.) is the variation of the real valued
measure z∗µ. In particular, we write

‖µ‖b ≡ ‖µ‖(X ).
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It is well known that any vector measure of bounded semivariation
has bounded range [Diestel and Uhl, Jr. Ref. 5, Proposition I.1.11] and
therefore they are called bounded vector measures.

Throughout the rest of the paper we consider X to be a regular topo-
logical space [6, Definition 1, p15]. Let FX ≡ AX (ΣX ) denote an algebra
(the Borel σ-algebra) of subsets of the set X . Let Mrba(FX ,Z) denote
the vector space of bounded finitely additive regular Z-valued vector mea-
sures. Recall that a vector measure µ is said to be regular if for every
z∗ ∈ Z∗, z∗µ is a regular scalar valued set function in the sense that for
every E ∈ FX and ε > 0, there exist sets F ∈ FX with F̄ ⊂ E and G ∈ FX
such that Int(G) ⊃ E and |z∗µ(C)| < ε for all C ∈ FX , C ⊆ G \F . Define

‖µ‖0 ≡ sup{‖µ(K)‖Z ,K ∈ FX }.
It is well known [see Dunford and Schwartz, Ref 6, p160] that

furnished with this topology, Mrba(AX ,Z) and Mrba(ΣX ,Z) are Banach
spaces. Let Mrca(ΣX ,Z) denote the vector space of regular countably
additive bounded Z-valued vector measures. Then Mrca ⊂ Mrba is a
closed linear manifold and hence it is also a Banach space.

In general, spaces of bounded vector measures are intimately related
to spaces of bounded linear operators as are scalar valued measures related
to continuous linear functionals, core of Riesz representation theorems [see
Dunford and Schwartz, Ref. 6, Theorems IV.5.1, Corollary IV.5.3, The-
orem IV.6.2, Theorem IV.6.3].

Let B(AX ) denote the completion in the sup topology of the space
of real valued simple functions on X given by linear combinations of
characteristic functions of sets {E ∈ AX } and let L(B(AX ),Z) denote
the Banach space of bounded linear operators from B(AX ) to Z. Simi-
larly defined are the Banach spaces L(B(ΣX ),Z) and L(C(X ),Z) where
B(ΣX )(C(X )), endowed with sup norm, is the Banach space of real valued
bounded measurable (bounded continuous) functions on X .

The following theorem is a special case of [5, Theorem I.1.13].

Theorem 3.4. There is one to one correspondence between the vector
spaces L(B(FX ),Z) and Mrba(FX ,Z) which is indicated by

L(B(FX ),Z) ⇐⇒ Mrba(FX ,Z).

Further this is also an isometry so that if L ↔ µ for L ∈ L(B(FX ),Z) and
µ ∈ Mrba(FX ,Z) then ‖L‖ = ‖µ‖(X ) ≡ ‖µ‖b.
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The following result, which has independent interest, is a generaliza-
tion of a result of Dunford and Schwartz from scalar to vector case.

Theorem 3.5. Let X be a normal topological space, Z a reflexive Ba-
nach space and Mrba(X , Z) the space of regular bounded vector measures
defined on the field generated by closed sets of X . Then there is one to
one correspondence between the vector spaces L(C(X ),Z) and Mrba(X ,Z)
which is indicated by

L(C(X ),Z) ⇐⇒ Mrba(X ,Z).

Further this is also an isometry so that if L ↔ µ for L ∈ L(C(X ),Z) and
µ ∈ Mrba(X ,Z) then ‖L‖ = ‖µ‖b.

Proof. Let µ ∈ Mrba(X , Z) and define the operator Lµ by

Lµ(f) ≡
∫

X
f(x)µ(dx).

We show that Lµ is a bounded linear operator from C(X ) to Z. For any
z∗ ∈ Z∗, we have

|z∗(Lµ(f))| =
∣∣∣∣
∫

X
f(x)(z∗µ)(dx)

∣∣∣∣
≤ ‖f‖0|(z∗µ)|(X )

≤ ‖f‖0‖µ‖(X )‖z∗‖ = ‖f‖0‖µ‖b‖z∗‖.
The last inequality follows from the fact that a bounded vector measure
has finite semivariation. It is apparent now that Lµ is a bounded linear
operator showing the correspondence Mrba(X , Z) ⇒ L(C(X ), Z). It re-
mains to prove the reverse inclusion. Let L ∈ L(C(X ),Z). Then clearly
(z∗, f) → `(z∗, f) ≡ z∗(Lf) is a continuous bilinear form on Z∗ × C(X )
and, in particular, for each fixed but arbitrary z∗ ∈ Z∗, f → `(z∗, f) is
a continuous linear functional on C(X ). Since X is a normal topological
space it follows from Theorem IV. 6.2 [Dunford and Schwartz, p262] that
there exists a unique real valued measure νz∗ ∈ Mrba(X ) ≡ Mrba(X , R)
such that

`(z∗, f) =
∫

X
f(x)νz∗(dx)

for all f ∈ C(X ). Hence there exists a unique λ ∈ Mrba(X , Z∗∗), de-
termined by L alone, such that νz∗(.) = λ(.)z∗ for all z∗ ∈ Z∗. Since
Z is reflexive, it follows from this that L(C(X ),Z) ⇒ Mrba(X ,Z). The
conclusion of the theorem now follows from this.
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For the correlated case and continuous h we shall use a slightly gen-
eralized version of this result in Theorem 4.2 below.

Corollary 3.6. If Z is a reflexive Banach space then the elements of

both Mrba(FX ,Z), and Mrba(X ,Z) are strongly additive.

Proof. It suffices to prove for the first one. Let µ ∈ Mrba(FX ,Z)
and let Lµ ∈ L(B(FX ),Z) denote the operator given by

Lµf ≡
∫

X
f(x)µ(dx).

Since this is a bounded linear operator and Z is reflexive, it maps bounded
sets into relatively weakly compact subsets of Z. Hence it follows from
[Diestel and Uhl. Jr. Ref. 5, Theorem VI.1.1, p 148] that µ is strongly
additive.

We close this section with the remark that in view of the above re-
sults, in our treatment of the filtering problem, we look at vector measures
as bounded linear operators with domain and range in suitable Banach
spaces.

4. Zakai equations on the space of vector measures

Now we return to Zakai equation (1.7) or equivalently the correspond-
ing integral equation (2.1). By a mild solution of equation (1.7) we always
mean a solution of the integral equation (2.1) in the classical sense. As
mentioned earlier, existence of solution of this equation has been been
proved only for the case when the initial measure is deterministic and
absolutely continuous with respect to the invariant measure µ0. In this
situation one has density valued solutions [see Refs. 1,2] in L2(H,µ0). We
avoid this restrictive assumption and prove existence of solutions in the
natural space of vector measures.

Consider the probability space (Ω,F , F̃t ⊂ F , P̃ ). Define the Hilbert
space Z ≡ L2(Ω, P̃ ) with the norm topology ‖z‖ ≡ (Ẽ|z|2)1/2 and let ΣH

denote the σ-field of Borel subsets of the Hilbert space H. Let Mrba ≡
Mrba(ΣH ,Z) denote the space of regular bounded finitely additive Z-
valued vector measures as introduced in section 2. We introduce the func-
tion space B∞(I, Mrba) to denote the linear space of functions defined on
the time interval I ≡ [0, T ] taking values from the space Mrba and weakly
measurable in the sense that for each φ ∈ B(ΣH), t 7→ µt(φ) ≡ Lµt(φ) is
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Lebesgue measurable and adapted to the σ-algebra F̃t, t ∈ I,and essen-
tially bounded in norm. In other words, this is an equivalence class in the
sense that for µ, ν ∈ B∞(I, Mrba), we identify µ with ν, (µ u ν), if

P̃{µt(φ) = νt(φ), for all φ ∈ B(ΣH), a.e.t ∈ I} = 1.

Again, furnished with the norm topology,

‖µ‖B∞(I,Mrba) ≡ ess . sup{‖µt‖b, t ∈ I}
≡ ess . sup{‖Lµt

‖L(B(ΣH),Z), t ∈ I},
it is a Banach space. By virtue of the isometric isomorphism as stated
in Theorems 3.4, 3.5 and for the sake of economy of notations, we have
written µt(φ) for Lµt(φ). Throughout the rest of the paper we shall use
this convention.

4.1. Uncorrelated noise

We assume that h, arising in the observation equation, is a bounded
Borel measurable map. In this case the operator G∈L(B(ΣH), B(ΣH , Rd)).
This is the case where the dynamic noise is uncorrelated with the mea-
surement noise.

Theorem 4.1. Suppose G ∈ L(B(ΣH), B(ΣH , Rd)) and S(t), t ≥ 0,
the Markov semigroup as introduced in section 2. Then for each ν0 ∈ Mrba,
equation (1.7) has a unique mild solution µ ∈ B∞(I, Mrba). Further the
solution is continuously dependent on the parameters {ν0,G}.

Proof. Let K denote the operator on B∞(I, Mrba) assuming values
(Kµ)t(φ) at t ∈ I, φ ∈ B(ΣH) given by

(Kµ)t(φ) ≡ ν0(S(t)φ) +
∫ t

0

〈µs(GS(t− s)φ), dv(s)〉.

First we show that K maps B∞(I, Mrba) into itself. Recall our notation
Lν(φ) ≡ ν(φ). Since v is a standard Brownian motion on the probability
space (Ω, F̃ , P̃ ), it is clear that

Ẽ((Kµ)t(φ))2 ≤ 2Ẽ(ν0(S(t)φ))2 + 2
∫ t

0

Ẽ|(µs(GS(t− s)φ))|2Rdds,

for any φ ∈ B(ΣH). The semigroup S(t), t ∈ I, restricted to B(ΣH), is a
contraction and by assumption G is a bounded operator. Thus it follows
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from the isometric isomorphism due to Theorem 3.4, that there exists a
constant γ > 0 such that

Ẽ((Kµ)t(φ))2 ≤ 2
(
‖ν0‖2b + γ2

∫ t

0

‖µs‖2bds

)
‖φ‖20,

for all φ ∈ B(ΣH) and t ∈ I. Recalling our notation,

Ẽ((Kµ)t(φ))2 ≡ ‖L(Kµ)t
(φ)‖2Z ,

and again using Theorem 3.4, it follows from the preceding inequality that
there exists a constant β dependent on γ and T such that

sup{‖(Kµ)t‖b, t ∈ I} ≤ β

(
‖ν0‖b + sup{‖µt‖b, t ∈ I}

)
.

This shows that K maps B∞(I, Mrba) into B∞(I, Mrba). We prove that K
has a fixed point in B∞(I, Mrba). It suffices to show that certain power of
K is a contraction. For any pair of µ, ν ∈ B∞(I, Mrba), following similar
computation, we have

‖(Kµ)t − (Kν)t‖2b ≤ γ2

∫ t

0

‖µs − νs‖2bds,

for t ∈ I. Hence by repeated substitution we obtain

‖(Knµ)t − (Knν)t‖2b ≤
(

γ2n/(n− 1)!
) ∫ t

0

(t− s)n−1‖µs − νs‖2bds,

for t ∈ I.
Clearly it follows from this that

‖(Knµ)− (Knν)‖B∞(I,Mrba) ≤ αn‖µ− ν‖B∞(I,Mrba),

where αn ≡
(

(γ2T )n/n!
)1/2

. Thus, for n sufficiently large, Kn is a

contraction and hence both Kn and K has only one and the same fixed
point. This proves that the integral equation (2.1) has a unique solution
in B∞(I,Mrba) and hence equation (1.7) has a unique mild solution.

For continuity of solution with respect to the data, let µν , µλ de-
note the unique solutions corresponding to the initial data ν, λ ∈ Mrba

(respectively) for a fixed operator G ∈ L(B(ΣH), B(ΣH , Rd)). Similarly
let µG , µH denote the solutions corresponding to the operators G,H ∈
L(B(ΣH), B(ΣH , Rd)) for a fixed initial state ν0 ∈ Mrba. Then, following
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similar steps, one can verify that there exist constants C1 and C2 such
that

‖µν
t − µλ

t ‖b ≤ C1‖ν − λ‖b, t ∈ I,

‖µGt − µHt ‖b ≤ C2‖G −H‖L(B(AH),B(AH ,Rd)), t ∈ I,

where the constants are dependent on the variables as indicated in their
arguments

C1 ≡ C1(T, ‖G‖), C2 ≡ C2(T, ‖G‖, ‖H‖, ‖ν0‖b).

In other words the solution is globally Lipschitz with respect to the initial
data (measure) and only locally Lipschitz with respect to the operator G.
This completes the proof.

4.2. Correlated noise

Here the system is driven by correlated noise in the sense that the
measurement noise affects the system dynamics. The model is described
as follows:

dx(t) = (Ax + F (x))dt +
√

QdW1 + B1dW2,

x(0) = x0 ∈ H

dy(t) = h(x)dt + B2dW2,

y(0) = y0.

The processes W1 and W2 are independent cylindrical Brownian motions in
real separable Hilbert spaces H and Rd respectively. The operators B1 ∈
L(Rd,H) and B2 ∈ L(Rd, Rd) with B2 being self adjoint and invertible.
In this situation the Zakai equation is again given by

(4.1)
dµt(φ) = µt(Aφ)dt + 〈µt(Gφ), dv〉

µ0 = ν0, φ ∈ D(A),

where the operator G is a first order differential operator (recall: D denotes
the Fréchet differential) given by

Gφ ≡ (B−1
2 h + B∗

1D)φ, φ ∈ D(A),

which is clearly an unbounded operator on B(ΣH). Again, this can be
written as the integral equation (2.1) with the difference being that, here
G is an unbounded operator.
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Under additional assumptions on the operator A and the initial mea-
sure, one can write this as a regular evolution equation in L2(H, µ0) and
prove the existence and strong regularity properties of solutions [see Ref. 2,
Theorem 4.12].

Here we were interested in measure valued solutions under only mild
assumptions. Generalizing this line of approach to vector valued distribu-
tions it may be possible to prove a similar result for the correlated case.
In this regard we believe that Theorem 3.5 will be useful with X = H and
Ck(H) in place of C(H). We can only make the following comment.

Remark 4.2. We note that the solution of the Zakai equation for the
correlated case can be approximated by vector measures as in Theorem 4.1.
Replace the operator G of (4.1) by Gn ≡ nGR(n,A) where n ∈ ρ(A) with
R(n,A) denoting the resolvent of the operator A. The sequence {Gn} is a
family of bounded linear operators in B(ΣH) converging strongly to G on
its domain D(G) ⊃ D(A). Hence by Theorem 4.1 there exists a sequence
{µn} ∈ B∞(I, Mrba) solving the problem (4.1) (in the mild sense) with G
replaced by Gn. We believe that this sequence converges to the solution of
the problem (4.1) in the topology of B∞(I,Drba) where Drba is a suitable
space of Z-valued distributions on H. At this time it remains an open
problem.

Remark 4.3. By virtue of Corollary 3.6, it follows from Theorems 4.1
that if µ is a mild solution of equation (1.7) then {µt, t ∈ I} is a family of
strongly additive vector measures. However it is not obvious if the strong
additivity holds uniformly in t on I. Another important question is: under
what additional assumptions can we expect countable additivity?

Remark 4.4. Our results do not provide any information on the tem-
poral regularity of solutions t → µt. For applications, however, it is desir-
able that functionals like

Ψg(µt) ≡ Ẽg

(
〈µt, φ1〉, < µt, φ2〉, . . . 〈µt, φn〉

)

are continuous in t ∈ I for any continuous scalar valued function g on Rn

and any arbitrary family of functions φi ∈ B(ΣH), 1 ≤ i ≤ n in case of
Theorem 4.1.

Acknowledgment. The author would like to thank the anonymous re-
viewer for many valuable comments and pointing out a deficiency in our
previous version where we gave a result for the correlated case under
stronger assumptions.



264 N. U. Ahmed : Existence and uniqueness of measure . . .

References

[1] N. U. Ahmed and J. Zabczyk, Nonlinear Filtering for Semilinear Stochastic Differ-
ential Equations on Hilbert Spaces, Preprint 522, Institute of Mathematics, Polish
Academy of Sciences, March 1994.

[2] N. U. Ahmed, M. Fuhrman and J. Zabczyk, Regular Solutions of Filtering
Equations in infinite Dimensions, Polish Academy of Sciences, Preprint 531, 1995.

[3] N. U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pit-
man Research Notes in Mathematics, Vol. 246, Longman Scientific and Technical,
U.K., 1991.

[4] G. Da Prato and J. Zabczyk, Regular Densities of Invariant Measures in Hilbert
Spaces, Journal of Functional Analysis 30 (1995), 427–449.

[5] J. Diestel and J. J. Uhl, Jr., Vector Measures, Mathematical Surveys, 15, AMS,
American Mathematical Society, Providence, Rhode Island, 1977.

[6] N. Dunford and J. T. Schwartz, Linear Operators. Part 1, Interscience Publish-
ers Inc., New York, London, (second printing), 1964.

[7] H. J. Kushner, Filtering for Linear Distribute Parameter Systems, SIAM J. Con-
trol 8 (1970), 346–359.

[8] B. L. Rozovskii, A Simple Proof of Uniqueness for Kushner and Zakai Equations,
Stochastic Analysis (E. Mayer-Wolf, E. Merzbach, A. Shwartz, eds.), Academic
Press, 1991, pp. 449–458.

[9] M. Zakai, On the Optimal Filtering of Diffusion Processes, Z. Wahrsch. Verw.
Gebiete 11 (1969), 230–243.

N. U. AHMED
DEPARTMENT OF ELECTRICAL ENGINEERING
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OTTAWA
OTTAWA, CANADA

(Received May 18, 1995; revised February 12, 1996)


