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Let A be a linear associative algebra over the field C of the complex numbers.
We do not assume that 4 has an identity element. 4 is called a normed algebra
provided there is a linear space norm on A satisfying the so-called multiplicativity
condition

0) Ixyll = lIxll iyl Cx, y€A).

If A possesses an identity element 1, then it is also assumed that |1|=1. If A4 is
complete with respect to this norm, then it is called a Banach algebra.

A mapping x —x" of A into itself is called an involution if the following standard
algebraic conditions

(i) (Ax+y)* = Ix*+p*
(ii) (xp)* = y*x*
(iii) (x*)* =x (A€C; x,y€A)

are satisfied. An algebra with involution (*) is called an involutory algebra or briefly
a *-algebra.

The starting point of the theory of Banach *-algebras was the excellent paper [6]
of GELFAND and NAIMARK. In this work the authors proved that a Banach *-algebra
with an identity is *-isomorphic and isometric to a norm-closed selfadjoint subalgebra
of all bounded linear operators on a suitable Hilbert space provided the following
there conditions are fulfilled:

(iv) Ix™« x|l =[xl
v) x| = llx]
(vi) 1 +x"x isregular (x€A).

At the same time they conjectured that both the fifth and sixth conditions are con-
sequences of the first four. As a consequence of the work by KELLEY—VAUGHT [10]
and Fukamiva [5], KAPLANSKY was able to remowe in [9] the so-called symmetry
condition (vi). In [8] GLimm and KApIsoN have given a direct proof of the Gel-
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fand—Naimark theorem without assuming conditions (v) and (vi). By a suitable
embedding into the algebra obtained by adjunction of an identity to the original
algebra, VOwDEN proved in [17] that no assumption on the existence of an identity is
necessary to have the Gelfand—Naimark theorem.

By a B*-algebra we shall mean a Banach *-algebra with condition (iv). It
should be mentioned that for Banach *-algebras with unit Berkson [3] and Glickfeld
[7] required the B*-condition only with elements of the form exp (i&), h is selfadjoint.
We have thus the characteristic identity

(vii), lexp (ith)|| = 1 (¢ real; he H(A)),

where H(A) denotes the selfadjoint part of A.

This condition defines in a complex Banach algebra the set H(A) of the so-
called Hermitian elements. Palmer showed in [11, 12], that (vii); with the additional
condition

(vii), H(A)+iH(A) = A

ensures the existence of an involution called Vidav-involution, such that H(A)
is just the selfadjoint part of the B™-algebra 4 with respect to this involution.

In a Banach *-algebra A the conditions (iv), (v) are clearly equivalent to the
so-called C*-¢condition

(viii) Ix*xll = |xI* (x€A).

A Banach *-algebra with condition (viii) is called a C*-algebra. In case A4 is a Banach
*-algebra without a unit element, Behncke [2] and Elliott [4] proved that for 4 to
be a B*-algebra [or a C™-algebra] it is enough that (iv) [or (viii)] hold when x is
normal (i.e. such that x*x=xx").

Recently H. ArRAKI and G. A. ELLIOTT have shown in [1] that the multiplicativity
condition (0) follows from the C*-condition (viii) or from the B*-condition (iv)
provided the involution is a norm-continuous map. At the same time they raised the
following two problems:

(TI) Is it necessary to assume that the involution is continuous in the second
statement ?

(II) Is it enough to assume condition (iv) or (viii) for normal elements to con-
clude the multiplicativity condition (0)?

The answer to (II) is in the negative as the full :'ilgcbra of bounded linear operators
on a Hilbert space of dimension not less than 2 shows, with the numerical radius
as norm [see e.g. 15]. However the author showed in [16], that the sub-C"-con-
dition ‘

(ix) Ix*x|| = x|I®? (x€A)

together with condition (viii) for normal elements ensures that a complex *-algebra
A with complete linear space norm be a C™-algebra.
The purpose of the present paper is to give an affirmative answer to the problem
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(I) of the ARaki—ELLIOTT paper [1]. More generally we shall prove that the sub-
B*-condition

(X) Ix* x|l = [[x*]llIxl] (x€A)

together with (iv) for normal elements implies the multiplicative condition (0) in
complex *-algebras with complete linear space norm, i.e. 4 becomes a C*-algebra.
The last theorem completes the result of the author’s paper [15].

We use in general the notation of RICKART’s monograph [14]. The first statement
plays a central role in the arguments of this paper. It is a general version of [15],
Lemma 1.

Lemma 1. Let A be a complex involutory algebra with linear space norm such that
(1 Ix*- x| = Cllx*[Ixll (x€A4)

holds with some constant C independent on x.
Then A is a normed *-algebra with continuous involution under a suitable al-
gebra-norm.

PrOOF. We are going to prove first
(2) \hk|| = 4C ||| k|| (h, k € H(A)).
Let us consider the identity
dhk = (h+k)*—(h—ky+i(h+ik)« (h—ik)—i(h—ik)- (h+ik)

for any two selfadjoint elements /4 and k. Apply then (1) together with the subadditive
property of the linear space norm to have

lhk|| = C(lh]l + K1)

In case that /7 and k differ from 0, we can replace # and k with //|h| and k/|k| re-
spectively so that (2) becomes immediate. Consider the “complexification norm™
defined by

\h+ik|, = li%sup {llhcost—ksint| + |hsint+kcost|: t real}.

This norm is such that
1 . : 4 ;
V_E(th +[lkll) = |h+ikly = A+ lkll, &l = |lAl,

and
\h+ik|, = |h—ik|,

hold [see 4, p. 7] for h, k€ H(A). The multiplication is then continuous with respect
to this norm as an easy computation shows:

[xylly = 8C|Ix[l Iyl (x,y€A).

The “extended left regular representation norm™ on A4 with respect to I-norm defines
then an appropriate algebra-norm by

| = sup {llxi+xpl,: A€C,yeA4; A+ |yl =1} (x€A).

4%
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This norm |.| satisfies indeed the multiplicative condition (0) since it is an operator
norm on the normed space 4, which is further equivalent to the 1-norm as the ob-
vious inequality

L lxl = Ixly = | = 8CIxl, (x€4)

V2

shows. This implies also that the involution is a continuous map on 4 under the
|.}-norm so that the proof is complete.
The spectral radius on 4 with respect to the |.|-norm, defined by

(3) r(x) = lim X" (x€4),

will be of great importance in the following. It makes possible to solve the problem
which remained open in the author’s paper [15].

Theorem 2. Let A be a complex commutative *-algebra with complete linear
space norm such that

(C)) %i[x*ll %l = lx*x|| = Clx*[ x| (x€4)

with some constant C independent on x. Then A is a C*-algebra with an equivalent
norm.

Proor. We prove first that the spectral radius given by (3) satisfies the C*-con-
dition
(5) rixtx) = r(x)* (x€A):
It is immediately an algebra pseudonorm such that
(6) r(x*) = r(x) (x€4)

being the *-operation continuous with respect to the |.|-norm.
Let now /1 be an arbitrary selfadjoint element in 4. (4) gives then by induction
for any natural n

C-Th|* = B = C*~* k)"

This implies the useful inequality for the spectral radius
|
(7 rel )l = r(h) = Clh| (h€ H(A)),

being the norms each equivalent on H(A). It then follows

(8) r(x) = r[“‘ e ]+r[“'_,,:"'] = C(Ix]| + Ix*]) (x€4)
and
©) x| = ”Y +2x I +Hx _2“ | = Co@+re) = 2010 (xe 4,
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using only (6) for the canonical decomposition of x into selfadjoint components
together with the subadditivity.
We are able to prove the following expression which is interesting in itself:

(10) r(x) = limmax [|x"*", [|(x*)"|*"] (x€A).

L -l

Note first that for any natural n

r(x") = r(x)" (x€A)
and so by (8)

r(x)" = r(x") = C(Ix"| + I(x*)"l) = 2C max (||x"[, |(x*)"])
holds with any x€ 4. This shows

r(x) = liminf max ([[x"[*/, [(x*)"|Y")  (x€ A).

fi— oo

On the other hand we have by (9)
max [||x"I(x*)"l] = 2Cr(x") = 2Cr(x)"
giving the reverse inequality for r(x) as follows:

lim sup max [[[x"|", [[(x*)"|V"] = r(x) (x€ A).

"= oo

These give together the stated identity (10).
We have thus in particular

(1) lim min [[lx"*, (Y M"] = r(x*x)/r(x) (0 # x€A).

n-+oco

To show this let us consider by (4) the inequalities

-é— min [||lx"], [|[(x*)"I] max [Ilx"]l, [(x")"]]] =

1
- EII(X’)"*% Ix" = I(x* x| = Cl*)IHIx" =

= Cmin [|x"], [|(x")"|[]max [[|x"], |(x*)"[];

take n™ rooth with any natural n.

We need only letting n— == to have (11) because of (10).

We are now going to prove the C*-property (5) of the spectral radius. Assume
first that there exists an index n, such that

(12) Jx"l = min [[lx"], |(x*)"[] (2 = ny)
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holds for a nonzero x in 4. We have then by (11)

lim || X"V = r(x* x)/r(x)

oo

so that A~'-x has a quasi-inverse for |[A/=r(x*x)/r(x):

WF

(& b ) e D

(A1),

Il
o

This implies the estimate for the spectral radius
r(x) = r(x" x)/r(x)
or y
r{x)" = r(x"x).
The assumption

(12%) 1*)| = min[Ix"], [(x*)"]]] (7 = n,)

has by (6) the same consequence.
If neither of (12) and (12*) holds then we may assume without loss of the
generality that

(13) 1=r(* ) <r(x), x| =[x

and
IC*Yl = ", Ix"+2) = [c*)+

for infinitely » many integers. From the identity
3
4(x*P*+ = ik (x + (=D (xM)") (x* + ik xm)
k=0
and using (4) together with the subadditive property of the norm, we get

% Gy = (el + MG D) ™) + 1x"1) =

= C(llar" x|+ [1Ge* )" + NC*Yl ™[+ llell « 7]
Noting that (4) also gives
(min [[lx"]l, [(x*)"[1)* = min [|x"]], [|(x*)"[] max [[|Ix"}, |(x*)"]] =
= "X = Cl(x*x)"],
we have from (13) by (7) and (9)

é—-ll(x*)"“l] = C}(r(x*x) +r(x*x)") + Cr(x* x)"2. | x*| + Cr(x* x)'/2. |x"]| =
= CQC+ |x*)+CIx"|.



On the definition of C*-algebras 213

Using the estimates
Ix*|| = 2Cr(x*) = 2Cr(x)*, r(x)'** = r(x"*?) = C(lx"**| + I(x*)"*21)),
resulting from (8) and (9) we get by (4) and (12)

J_ PN o L n+l * . an41/2 _l_ n+l__ 178 * an+11/2 =
e r(xy"*1—-C = o r(x) Cr(x*x) =7 r(x) CHY, |(x* xy*+2|72 5
. %"(x)"““ "+t = [(=*)"* = C*+ 2C + [ x*[)) + 2C*r(x)".

Letting n -+ == we have
%r(x)"“ & 20% ()"

or
r(x) = 2C.

Since in (13) r(x"x)=1 was assumed, this implies for such an x in 4 fof which (12)
does not hold,

(14) r(x) = 2Cr(x* x)\2.

Because C=1, we have then (14) for any x in 4. But an easy computation gives now
P(2) = r(3%) 3 20 ((* Y )2 = 20N [ P, 1T S A

and taking a limit n— o,

(5 r(x)* = r(x*x) (x€A).

To have (5) we need only to prove the reverse to (5)". But this is an easy consequence
of (6) by the submultiplicative property of the spectral radius:

r(x*x) = r(x*)r(x) = r(x)* for any xcA.

We shall prove finally the equivalence of r(x) to the original norm. Using (9), (5),
(7) and (4) in this order we get for any x in A4 the inequalities:

lj * *
¢ X2 = r(@)? = r(x*x) = Cllx* x| = C*|x*] - x|

This implies the norm-continuity of the involution in the form

Ix*]| = 4C!|x]| (x€4)
and so

(15) —zl—c Ixll = r(x) = 2C3|x|| (x€A).

Thus we get that 4 is a C*-algebra with an equivalent norm given by (3), as as-
serted.
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Remark. 1t should be remarked that the resulting continuity of the involution
implies that the auxiliary norm |.| is also equivalent to the original norm and that
in place of (10) the improved expression

r(x) = lim [|x"|*" (x€A)

n—eoo

holds.
The main result of this paper is the following theorem. We get this result as
a consequence of [15], Theorem 5 in view of the proof of Theorem 2, namely (5).

Theorem 3. Let A be a complex involutory algebra with complete linear space
norm such that

(X) Ix*xll = Ix*xll for any x€A
and

(1V) () Ix*xi| = [|x*llix] Sfor amp x*x=xx*
hold. Then A is a C*-algebra with the original norm.

ProOOF. Let C be arbitrary maximal commutative selfadjoint subalgebra of Ae
It is not immediate that C is closed in A, being the continuity of the multiplication
does not ensured. But the proof of Theorem 2 implies that r(.) is an equivalent
norm with the C*-property (5) on C. In case if (12) holds, the quasi-inverse of A~ 'x
(for |A|=r(x*x)/r(x)) exists in A (not sure that at allin C) implying r(x)*=r(x*x)
also for such an x in C. In particular the multiplication in C is a continuous opera-
tion with respect to the original norm. The maximality of C now implies that C is
closed in A4, and so C is a C*-algebra with an equivalent norm. As a consequence
of [1], Theorem 2 C is then itself a C"-algebra with the original norm.

We shall prove that 4 is a C*-algebra also. Denote A~ the |.|-norm completion
of A. Then A~ is a Banach *-algebra with respect to the norm |.|. To show that
A" is a C*-algebra with a norm equivalent to |.|, we need by [13], Corollary 12 only
that the set

5 {f‘(fh“)ﬁ/nz:h"* - h'eA"}

n=1

is bounded in (47, |.|). Since by (7) for normal x¢ A4 as an element of some maximal
commutative selfadjoint subalgebra:

|x-|;x*|
| 2 |

e— 7|

[ %]

Il = || = s[ i

] = 16r(x) = 16|x|

holds (from Lemma 1), we have for a selfadjoint /1 in A

LI 5 anypmt| = | 5 anyym = 16
V2 |[n=1 n=1

2> (ih)"[n!
1

n=

|-_:32

]

being the C*-norm of the quasi-unitary element > (ik)"/n! is not greater than 2.

n=1
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Let 4~ be now a selfadjoint element in A~, then for any ¢=0 there exists 1 in H(A)

such that
|h| = |h7] and |h" —h| < ee~ V"L

It then follows that

If(m*wn! = | 3 ihyn)| +¢ = 32+¢
n=1 n=1
since
E‘i,[(m y—hy) = 30| 'S @y ym | =
5 : n=1
= 3LU'S @ y-m-r (i —inyny| =
n=1 M. m=0

n—m—1 "
b SELE o

=1

Here & was arbitrary so that 32 is a desired bound of M in norm |.|. The C*-norm
must agree for any x in 4 with r(x*x)"*as an easy consequence of the C*-property.
But (7) implies by the assumption

r(x*x") = |x*-x] (x€A).
When we are able to prove
(16) Ixll = Ix*x|'"2  (x€4),
then we have in fact
(17) Ixl = lx* X[ (x€A),
which proves the statement of the theorem. Indeed, since by assumption (X) we have

lxll? = lx* x| = llx*|l llx]
for any x in A. This gives
lxll = l|x* (x€4)

or using (iii)
[Ix* = lix| (x€A).

Then (17) becomes clear from the estimates

IxIl = Ix* x| = [Ix*|2 X[ = |Ix]|  (x€A).
To prove (16) suppose that 4 possesses an identity element. Then [12], Corollary (3.7)
ensures an appropriate expression of the C*-norm for an x in A4 as follows:

Ix* x||"? = mf{ Zn' 2] 1% =
i=1

). yexp(th;), h;* =hjed” (j=12,...), n=1, }

I l\d"
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n
; : .8 TR :
If now 21 |4l < ||x*x|i”3+3 for some &= 0, chosing in 4 normal x; (j=1,2, ..., n)

such that
Ix;ill = lxF ;1Y% =1, |exp (ih;)—x;| <-€/2 l’lf)“_zl' |4;] (J=12,..,n),
we have
el = [le— 3 4y, +H,2 )| =2 3 lhllexp @) —x]+ 3 14 <
o - = .
g e, & * .(11/2
< 5+|[x x| +E— [|x*xl**+e

and so (16), being ¢ arbitrary.
In case if A has not an identity

lIx* x|[*® = inf{ Z"' A x =
Jj=1

= 4 SWriml, K*=Kcd” (=12 ...08=12 }
j=1 " m=1

holds similarly [where 2> 4;=0].(16) can be shown in analogous way. The proof of
i=1

theorem is thus complete.
We have the answer to the problem (I) as an immediate consequence of Theo-
rem 3.

Corollary 4. Let A be a complex *-algebra with complete linear space norm with
B* -condition (iv).
Then A is a C*-algebra.
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