The construction of linear order statistics
with the help of pseudo-random numbers

By BELA GYIRES (Debrecen)

Introduction

The authors paper [3] was devoted to one of the important questions of modern
mathematical statistics, to the limit theorems of linear order statistics. A part of
the results obtained proves helpful in finding a method for the construction of
order statistics with given limit distribution. In these constructions pseudo-random
numbers can also play a role. The present paper is devoted to this question.

The paper falls into three parts. The first part is devoted to finding pseudo-
random numbers suitable for our purpose.

In the second part we define linear order statistics and we formulate two theo-
rems due to the author, upon which the results of the third part will be built.

The five theorems of the third part deal with the construction, based on pseudo-
random numbers, of order statistics with given limit distribution.

In the hole paper, a fundamental role is played by the convergence in the weak
sense of random variables. For different definitions of this notion see [2], 37—38,
58. As in [2], weak convergence will be denoted by =.

1. F. Riesz has given the following generalization of the well-known ergodlc
theorem of G. BIRKHOFF ([4], 224):

Let a measurable set © be given, of finite or infinite measure, the corresponding
measure and integral being defined according to Lebesgue, or more generally, by
means of a distribution of positive masses. That being the case, let us designate by
T a point-transformation which is single-valued (but not necessarily one-to-one)
from Q onto itself; and let us suppose that 7 conserves measure in the sense that,
E being a measurable set, TE its transform, and E” the set of points P whose images
appear in TE, the sets E” and TE have the same measure. Then, if £;(P) is an integrable
function and £, (P)=/f,(T*~'P), the arithmetic mean of the functions f;, ..., f, con-
verges almost everywhere, as n—~ <=, to an integrable function ¢ (P) which is invariant
(almost everywhere) under 7.

Let us add finally that in the case where @ is of finite measure, it follows by a
term by term integration (which is permitted in this case because of the uniform

integrability of the terms)
[oPyaP = [f,(P)aP.
0 (]

Moreover ¢ (P) is almost everywhere a constant if and only if T is ergodic.
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If Q and T are known, then this theorem enables us to generate pseudo-random
numbers, playing an important role in Monte Carlo methods.

Choosing Q=[0, 1), J. N. FRANKLIN has shown [1] that for a natural number
N=1 and a number ©¢[0, 1) the transformation

(1 Tx = Nx+ 0O —[Nx+ 0]

satisfies the conditions of Riesz’ ergodic theorem and it is ergodic. Thus he obtained
the following result:

Let f(x) be an arbitrary integrable function in the sense of Lebesgue. Let x,¢[0, 1),
and let a sequence x,, x,, ... be formed according to

(2) X, = Nx,_,+ 6@ —[Nx,_,+ 0],

where N is a fixed integer =1 and @ is a fixed number from [0, 1). Then for almost
all x,
n—1

1
u;: f(xh,\.) - ff(.\‘) dx, n - o,

0

1

3) o
n

When N=1 in (1), in the classical paper ([5], 313) H. WEyL showed that for

every value of the sequence (2) is equidistributed if and only if @ is irrational. The
sequence Xy, X,, ... is said to be equidistributed if, for every fixed [a, b)C[0, 1)

1 g

—_ > 1l -b—a, if n— .
n  x cla, b}

*k=01,...,n—1)

H. Weyl has also shown ([5], 314) that if for N=1 the numbers (2) are equi-
distributed, then for any function f(x) defined on [0, 1) and integrable in the sense
of Lebesgue (3) holds. (As a matter of fact, Weyl has established this result for
Riemann-integrable functions, his proof, however, carries over without change to
the Lebesgue-integrable case.)

Making suitable choices for f,(P) and for f(x), one proves without difficulty
that the numbers 7%~ P (k=1, 2, ...) occurring in Riesz’ theorem and the numbers
(2) of Franklin’s theorem are equidistributed with probability 1 on the set  and on
[0, 1) respectively.

From the point of view of mathematical statistics these random numbers are
only pseudo-random numbers. As a matter of fact, mathematical statistics requires
from random numbers not only the validity of the above criterion of uniformity,
but also statistical independence. This latter condition, however, is not satisfied
for our random numbers, since the choice of the first number determines the sub-
sequent ones.

2. Let the matrices with real elements

“) A, = |ay ... a3) v=12..)
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be given. Let us define the random variable 5} (j=1, 2, ...) on the matrix 4, as
follows:

If oy, ..., %, (1=s5=v) are pairwise different natural numbers and k,, ..., k, are
arbitrary different numbers from the numbers 1, ..., v, then

v) — Alv) l

vy (v - —— .
Pey = gy s ey’ = k) = 5o r—3 1)

From this definition we infer that " is a uniformly distributed discrete random
variable, namely

1
P(nj = afp) = — k=1, ..,7).

v

Definition 1. By the linear order statistics generated by the random variables
e g™t we mean the random variable
= i (
sm,n ﬂim“" + e + "mm+")
with a non-negative integer n.

Definition 2. By the linear order statistics generated by the matrices (4) we mean
the ensemble of the random variables

‘:m,u (m=1,2, ...} HZO,I,Z,...).

Definition 3. The linear order statistics generated by the matrices (4) are
asymptotic, if for any natural number m there exists a random variable &, such that

= - 2
Smn=Cms M —+ o0

’

Definition 4. The linear order statistics generated by the matrices (4) are doubly
asymptotic, if there exists a random variable ¢ such that

buan=C If R+, M=,

We are going also to speak about asymptotically ¢, -distributed (m=1, 2, ...),
and about doubly asymptotically ¢-distributed linear order statistics respectively.

Clearly, the asymptotic order statistics generated by the matrices (4) are doubly
asymptotically distributed if and only if ¢, =&, m—>ce.

Let &, be the set of the uniformly distributed discrete random variables and if

n'Y€4&,, the index v denotes that the probabilities belongs to n'*) are 1l Let &,

be the set of those random variables n, which can be represented in the form
"=n v, gMed.
The author has proved the following two theorems ([3], theorems 1.5., 1.6.):
Theorem A. If n;€é, (j=1,2,...), ie. if

M =mn, v-o, nVEs,
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then the linear order statistics generated by the matrices (4) determined by the values
of the random variables ny (v=1,2,...; j=1,2,...), are asymptotically equal to
the sums of the random variables n,, ..., n, (m=1,2,...) independent from each
other.

Theorem B. If n;cé, (j=1,2,...), ie. if
N =1y, v>eo, npYes,

then the linear order statistics generated by the matrices (4) determined by the values
of the random variables n}"’ (v=1,2,...; j=1,2,...) are doubly asymptotically of
distribution n if and only if

Mmt..+lHu=>1n m-—+ oo,

3. In this section we shall construct linear order statistics having given limit
distributions with the help of pseudo-random numbers.

Theorem 1. Let T; be a measure-preserving ergodic transformation of the mea-
surable set Q< R, with finite measure into itself or into a part of itself, and let

fdx= l.
L¢]

Let, moreover, f;(x) be an function being Lebesgue integrable on the set Q. Then the
linear order statistics generated by the matrix (4) formed with the elements

af =f(T52x), €0 (k=12..)

are asymptotically

distributed with probability one, where {,, ...,(,, are independent, on the set Q equi-
distributed random variables.

PrOOF. Let x€Q and 7 be a measure-preserving ergodic transformation of Q2
into itself or into a subset. Let f(x) be Lebesgue-integrable on the set Q. Let the
random variable n, be defined by

P(n, = f(T*1x)) = % AR AT

In order to prove our theorem, by Theorem A. it is sufficient to show that

(5 P(nn :>f(C), - = oo) =1,

where { is a random variable equidistributed on the set Q.
Together with f(x) the functions cos (¢f(x)) and sin (#/(x)), 7€ R, are also Le-
besgue-integrable on Q; thus by the ergodic theorem of F. Riesz the relations

1
n

coslff )dx +i [sin[f()ldx = [e"Vdx, n~o, teRy

; {cos [tf (T*=2x) +isin [1f (T* ')} =

x| -

-..x.___‘ I [\4=

f: exp [itf(T*~1x)] -
k k=1

—-
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is satisfied with probability one on the set ©, and this is just the statement expressed
by formula (5).

At the same way by the theorem of J. N Franklin and H. Weyl respectively we
can proof the following two theorems:

Theorem 2. If j}(x)' is a Lebesgue-integrable function defined on the interval [0, 1),
x;€[0, 1), ©;€[0, 1), N;=1 is a natural number,

xJ'k = ijjk—l+9j_[ijjk—l+9j] (k = l-, 2, B xj" = Xj),

then the linear order statistics generated by the matrices (4) formed with the help of
the elements
a}{’ = .f;'(le—l)

are asymptotically with probability one
fl(gl)+“'+fm(5m) ('ﬂ: 1925“')

distributed, where (,, ...,{,, are independent random variables equidistributed in the
interval [0, 1).

Theorem 3. If f;(x) is a Lebesgue-integrable function defined on the interval [0, 1),
x;€[0,1), ©,€[0, 1), irrational,

xjk=xjk_1+9j*—[xjk_l+9)y] (k': 1,2,..-; ju=xj'),
then the linear order statistics generated by the matrices (4) having elements
0};}'} = fi(Xjk-1)
.ﬂ(:l}+- +fm(Cm) (”3 = l) 29 -'*)

distributed, where (., ...,{,, are independent random variables, uniformly distributed
in the interval [0, 1).

are asymptotically

On the basis of our Theorem B already quoted, it is also possible to construct
with the help of the three theorems just formulated linear order statistics which
are (with probability one) doubly asymptotically of given distribution.

Let ¥ denote the set of those continuous distribution functions F(x), which
are strictly monotonely increasing in some interval (a, b), and satisfy F(a)=0,
F(b)=1. a= - =, b= is also possible. Let the inverse of y= F(x), existing in the
interval (a, b) be F~'(y).

Theorem 4. If the random variable & has an expectation and its distribution func-
tion F(x) belongs to €, the F~'(x) is Lebesgue-integrable on [0, 1]. If, moreover
©c[0, 1) is irrational and

(6) Xp = X1+ 0 —[x_1+ 0], x,€[0, 1),
then the random variables n, defined by

P[n,,=F“(xk))=% k=0,1,..,n—1)

weakly converge for n-<< to the random variable &, i.e. £€6,.
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Prook. In view of
1 oo
JFdy = [ xdF(x),
0 ~co

F~1(y) is Lebesgue-integrable on [0, I]. Since moreover, (= F(¢) is uniformly dis-
tributed in the interval [0, 1], we have n,=F "' ({)=¢, n— <, by what has been said
in the proof of Theorem 1.

Theorem 4 implies the following corollaries, which we have obtained earlier

by another method ([2], Corollary 2.2, 2.3):

Corollary 1. If the random variable ¢ with an absolutely continuous distribution
Junction has an expectation and its density function is positive on an interval (a, b)
(with possibly, a = — = and or b= <) and zero outside this interval, then € 6&,.

Corollary 2. The random variables with normal, Chi-square, Student (n=1), ex-
ponential distribution are elements of the set &,.

By basing our considerations on Theorem 2 rather than on Theorem 3, we
are able to obtain a theorem analogous to Theorem 4.

Theorem 5. If the random variable  has an expectation and its distribution
Sunction F(x) belongs to €, ©c[0,1), N=1 a natural number,

X = ka—l+ @—[in__l“r'el, -\'116[0, I),

and if the random variable n, is defined by

P[ﬂn=F'1(-¥*}]=% k=01 ui=1)

then
P{nu:’;r n—.-:x_-.): ]$

ie. C€8,.

With the help of Theorems 3. and 4. we are able to construct, making use of
the pseudo-random numbers (6), also linear order statistics which are asymptotically
Chi-square distributed. To construct such statistics is advantageous also in view
of the well-known fact that the sum of independent Chi-square distributed random
variables is again Chi-square distributed, and the degrees of freedom are added up.

Let F~1(x) be the inverse of the function

F(y) is the distribution function of the Chi-square distributed random variable
with degree of freedom one, in the case y=0.
Let ¢ and n be continuously distributed random variables, and

19 roes Sops nl,..._.""
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samples with respect to these random variables arranged in a monotonically in-
creasing order, with &, ..., ¢, having the rank ry,...,r, respectively. Since by
Theorems 3. and 4. the random variable

FoME o £ F 4R

formed with the help of the pseudo-random numbers (6) is for n— < Chi-square
distributed with m degree of freedom, with the help of Chi-square tables and on
the basis of a great number of observations we are able to reach a decision concern-
ing the adoption or the rejection of the hypothesis

Hy: P(§ < x) = Py < X).
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