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1. Introduction

An affine connection on a differentiable manifold M with local coefficients
Iy (x) induces a connection between the tensors. In the case of tensors of type
(2, 0) it defines an absolute differential. This is in local coordinates

(1.1) Dt = dtV + (I} 8]+ 6T/ ) dxs.

However (1.1) does not produce the most general possible linear mappings between
the »* dimensional vector spaces formed by tensors of type (2, 0) and attached to
the different points of the base manifold. Such a general connection is given by

(1.2) Dt = di 49,5 (x)t* dx*

and it is called a tensorial connection. Tensorial connections for arbitrary types of
tensors were studied by a number of authors?). In the case of

?rk”: - rr'sai""sf' rkjs
or
. , @
?rkljs - rr ,(5{-!-5,!‘*!,
the tensorial connection is reducible to I', resp. to the two different affine connec-
()] @ (e @
tions I and I'. Also we say in this case that y is induced by I', resp. by I' and TI.

(1.2) is linear in the components of the tensor. But also connections non-linear
in the components of the tensor (resp. the vectors), e.g.

Dt = dtd +-+Y (x, 1) dx*,

were studied by several authors?).

1) A fairly extensive bibliography can be found for example in A. Cossuv [1].
%) E.g. A, KawacGucHi [3].

g
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We shall investigate non-linear connections of tensors of type (m, 0) (tensorial
connections) given by

(1.3) Dr* = dr* +y*,(x, 1) dx®,

where a=i,i,...1,,and so x=1, 2, ..., N; N=n™. Connections (vectorial or tensorial)
in this paper mean always non-linear connections (not necessarily linear connec-
tions) if not otherwise stated. We assume that: y* (x, 7) is homogeneous of degree 1
in * and therefore (1.3) gets the form

(1.4) Dt* = dt*+yy(x, 0P dx* (B = juja e Jm)

where

07 (x, t
Yﬂxs(x9 f) — 'J’_(r’(r_;'_)”

Curvature tensors for these geometries can be obtained in two different ways.
The first and more common way to obtain a curvature tensor is to express the con-
ditions of integrability of the parallel displacement. This method furnishes a curvature
tensor of order higher than 4, the order of the curvature tensor of a linear vector
connection. The second method arives to a curvature tensor through investigation
of the equivalence of two tensor connections. This way was taken by L. TAMASSY
(e.g. in [5]). This provides a curvature tensor of order 4. In the case of a linear vector
connection the two ways lead to the same curvature tensor (but not so for tensorial
connections).

Also (1.4) can be reducible. Denote by

T, = {t*|thrhrtm = £4, Q) ... S} € T = {1}
the set of those 7* which are products of m vectors i‘(,,,, (a=1,2,...,m) and by
T‘! —_ {fi1‘i] g oui by — iiléig St &fm} = Td

the set of those r* which are being generated by single vector £. Then 7,7 is said to
be reducible over 7, to the non-linear homogeneous vector connections with the

(a)
coefficients H ' (x, &) if

m (a) .
(15) Yo .1:(Y 1) = ZHJ.. ,(X, Ctal)‘sh . ‘):: :dl::i e 5;: UET")'
a=1

Similarly y,* is reducible over T, to a single vector connection H(x, ¢) if

(1.6) 7% 1) = ZI' H; a(x, &) .. 5'“ roj;;; e 8fm  (LETYS).
The last type curvature tensor is given by?)

¢ oM, oM/
(1.7) Riu = =5 — =5+ 2M y My,

3) For m=2 see L. TamAssY [5].
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where

(].8) "ul':jmk = _]..}r igiy.. 'mimk

g iy

In the case of a reducible tensorial connection, which case we will study, there exist
the m curvature tensors

(a) (a)
}H'i ] :‘a )H ’ a
(1.9) R (X% Sa) = : Jk{;j:; s ‘(():g S ’)+2Hm(x, fm)Hum(x, Sia)

(@)
of the vector connections H /i (x, ;) too.

In this paper we wish to study the relation between the curvature tensors (1.7)
and (1.9), especially the case of the additive decomposability of R, i.e. the case when

l m
(1.10) Riu(x, t) = =k E ;u(x: ) €T

This problem was proposed by A. MOOR.

We will find sufficient conditions for the additive decomposability of the curva-
ture tensor R and we will study the vector connections to which the tensor connection
reduces in the case of the decomposability of R.

The author wishes to offer to his teacher L. TAMAsSY his thanks for his guidance
during his stay at the KOSSUTH University in Debrecen.

2. Conditions for the decomposability of the tensor R

We will study reducible tensorial connections and therefore (1.5) or (1.6) and
also 1€ T, will be throughout assumed.
It follows from (1.7)—(1.10) by an easy computation that

1 m (a)
(2'1) q k_;(x) I) == E /lRt; k_;(‘“ CIaI)+Lq kj(xl t)n
where
m m (a)
(2°2) Lqpkj(x) f} = F{ Z Z s [l’.(v? Sfa))qulj](xi c(b))_
( )

m (a) (a)
—(m—1) .Z; HPu(X, Sia) Hig jy (X, Cta))}.
a=

(a)
Since both R and R are tensors, so is also L. It is obvious that the vanishing of L
is equivalent with the additive decomposition of R.
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Theorem 1. If the tensorial connection y,% is reducible over t< T, to the vector
(a)
connections H /' (x, &) with the property that in a coordinate system

(a) (a)
(25) Hr o, Eo)— ;OB (5 E) =0 (%) (@=1,2,...,m)

then R}y (x,t) is additively decomposable.

(#) means that summarising for indices occurring double in term will be
omitted?).
From (2.3) we have

(a
H(x, ¢) = A&j(x)Hsj(x E@) = A (X)[4 ;k(")Hs k(X )] ().

Putting j=k in (2.3) we get

(8)
H (x, Say) = A V)Hs (X, $a))
and thus

(2.4) ;'kj(x))'jk(x) =Aux(x) =1 (=)

On the other hand (2.2) can be written in the form

2 m [(a) m (b) (a)
(2.5) Loy =23 Z{H,",‘ [[ 2 Hq’,]—(m~ NHS;| -
g (b=a)
(a) m (b) (a)
=iz |[ & ) -on-vc.

(b= )

L =0 obviously if

(a) m (b) (a) (al m (b)) (a)
(2.6) H,’*[[ ?H‘] mi—1)H ] " v;ﬁ!*]—(m—mq;,k il

Using (2.3) we get for the first term of the left hand side of (2.6)
(a) m (b) {a) % (a) m (b) (a)
[[ |-~ HH;,-] = hyiuH2, [[ 3 Hu]—-(m—nﬂ.ﬁ.].
(hra)

However, with respect to (2.4) (2.6) becomes true and since L =0 suffices for the
additive decomposability of 'R/ (x, t) the Theorem is proved.

4) For example in (2.3) we do not summarize for ;.
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We can see that (2.6) becomes true and thus the curvature tensor R of the re-
ducible tensorial connection is also decomposable if

(a) m (b) (a)
2) H2 (%, &) = A2(x, &) [[ 2 s 0-m-DHAx 0] (+)
(::_fc)
or
(a) m (b) (a)
b) HP.(x) = }u:(x) ” ag; Hq’t(x)— (m— l)H,,’k(x) . L)
(b=a)

b) is independent from &,, and therefore in this case R is decomposable for 1€ T),.

(a)
a) can be considered as a linear equation system for the unknowns H, %, of number m
for fixed s, ¢, k. This system has the detailed form:

Q.7
(1) (2 (m) ) 1 (1)
(m—DH (5 = Hiy(x. &) = .~ B\ (5, 8) = — s HA(6 8, (%)
‘q ¢y =
(1) . (2) g (m) . I (2) 2
) - H (%, 8} +(m—DNHS (%, §) = ... —H(x, {) = D) HP(x, &), (=)
L%
(n * (2) _ " (m) ” 1 (m)
— HS5(x, ) —HS(x, ) — ... +(m— 1D H S5 (x, &) = ~ P B &) ' (%)

q

The sum of the left hand side vanishes and the sum of the right hand side is

| m (a) -
(2.8) —'m‘% Hr(x, &) (=)

For (2.7) to be solvable (2.8) too has to vanish:

m (a)

(2.9) ,;; HF(x,8) =0
Using this in (2.7) we get
(@ 1 @
mHﬁ(x,é):—mH,ﬂ(x,é} (%) e=1,2 ..,m);

or by putting ¢f = —mi}

(a) (a)
(2.10) HP(x, &) = o (x, OHS(x, &) (*).
Conversely, from (2.9) and (2.10) we can easily get back the system a). The same
)

(a
holds for b) in the special case that H,?, is independent from £. Thus we have
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Theorem 2. If the tensorial connection is reducible over 1T, (resp. t¢T,) to
(a) (a) _
the vector connections H jik (x,¢) (resp. Hfy(x)) so that in a coordinate system

(a)

a) Hsrk = O-;Hqsk (*)
and
m (a)
b) Z H;k = 0
a=1

hold, then R(x,t) is decomposable.

Theorem 3. a) If the tensor connection yg*((x, t) is reducible over tcT; to the
vector connection H}\(x, &), then R}y(x, 1) is decomposable for t€T,.

b) If y,% is reducible over tcT, to the linear vector connection H'(x), then
Ru(x, 1) is decomposable over teT,.

(a)
As a matter of fact, in case a) H;,(x, {)=H /', (x, {) and so

2 Z ’ .
Lqp&j{xs 1) = e | {(m'- l)mep[k(x; C)Hﬂ;u](x: ¢)—m(m— l)H,”[.(x, C)H|sqij](-", f)}
(a)

vanishes indentically. In case b) H/(x, {,)=H(x), thus again L=0 and this
suffices for the decomposability of R.

3. Existence of the vector connections of types (A) and (B)
We give methods to construct connections of the types
(A) Hj(x, ) = hu(x)H/f(x, &) (%)
and
(B) Hjy(x, &) = ay(x, O HJu(x, ) (*)
which appeared in the previous paragraph.

I) type (A) : _ _
First we remark that the functions /,,(x) have to satisfy the indentity

(3.1) ’T-u(x)l:j(x) = ’ij(x) (*).

This follows from (A) by repeated application of (A).
In order to construct a connection of type (A) consider »* functions H/,(x, ¢)
homogeneous of degree zero in £, and » never vanishing functions fi(x). Now let

Si(x)

"-u (xX) = 77—

f;i(x)
Hjik(x’ §) = j-k:(x}Hﬂ(X, ¢).

and
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These 4, satisfy (3.1) and (2.4), and also (A) is satisfied, since

i . Aa(X) o o Jil) fix)
H.' x, :ﬁ—H' _\', = —_—
i ¢ An(x) 1% <) S1(x) fi(x)
I1) type (B)
In the way similar to the previous considerations it can be seen that the g}-s
satisfy the indentities

(3.2) oi=1 (%) and 0,0} =0, (*)

Hj‘l(x! é) - )“H(X)Hjii(xa ‘i) (*)

In order to construct a connection of type (B) consider n never vanishing func-
tions H,/,(x, £) homogeneous of degree zero in the ¢. Now let

H1j2 —_— e — }fljﬂ - Hljl,

o _ Hik(x, $)
o';’(x, ¢) = H%(x, <) B
and '

Hj'k(xa é) = di(x$ é)Hljt(x! é) (“G )'

One can check that these functions satisfy (B) and (3.2).
Having constructed a connection of type (B) we can easily construct m connec-

tions satisfying conditions a) and b) of Theorem 2. If H, is of type (B), then
@ @ (m~-1) (m)
H=H=...= H =H and H= —(m—1)H obviously satisfy a) and b).

4. The non-invariance of the properties (A) and (B)

We show that neither of these properties is invariant with respect to transforma-
tions of the coordinates. We wish to show this for property (A). It suffices to show
that there exist H (x,¢) and x'=x'(x") such that the H, satisfy (A) but after
the transformation x'=x(x") the transformed H,",. do not satisfy (A) for any
A (X))

Let

4.1 Hjit(xs §) =f(x) (Vi ], k).

These satisfy (A) with 4,=1.
Suppose that (A) holds after the transformation x'=x(x") for certain A, .
Then we have

(4.2) Hj v = hev Hy'y (%)

Taking into account the transformation law of the coefficients of the connection
we have

AV AL AR HS A+ (0 AY) AV
T AT AL ALH A+ (0 AN AT

; I
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The right hand side must be independent from the indices i” and j’, for so is the left
hand side. Thus the right hand side gives the same value for two different pairs of
indices ig, jo, i1, /1

AP A AV H A+ D AR AP AP AL AL H  + D A7) A

(4.3) & d 4 =
AP AL AV H A+ O A AP AP AL AVH S+ (0 AS) AP

If (4.2) is correct, then we may replace H ', in (4.3) by f(x) .Then expressing from this
the function f(x) we have

(4.4) f(x) = F(A:, A, 0; A, X’ (x))

with a relatively complicated, but well-defined function F; but since in (4.4) both
f(x) and the arguments of F are arbitrarily taken, (4.4) does not hold in general
and so neither (4.2) can hold good for every transformation x'=x'(x").

The statement concerning property (B) can be proved in a similar way.

5. A geometric property of a connection of type (A)

We wish to study the geometric character of the most simple, i.e. of a linear con-
nection of type (A). Its coefficients satisfy

Hf(x) = A;,(x)HS(x)  (*).

We also assume that the H", are nonvanishing for any r, s, k.
In this connection

dé' = — Hi(x)& dx' = — ETH [ (x) A, (%) dX'.
The question is under what conditions does d¢' vanish for all ¢ We remark that
éjHjIku(x) = S H (x) + E Hyly () + ... +§"Hnik.,(-‘f)

cannot be zero for every &, &2 ..., &", for then Hj*&n would be zero for every i,
J. k in contradiction to our assumption. Thus &' vanishes for all ¢ if and only if

(5 l} J;.m (.\') dx: =0,

This is a system of linear equations for dx'. The solutions of this system are the
directions in which the parallel displacement is the ordinary one.

In consequence of (3.1) the rows of the determinant 4=Det 4, are pro-
portional, and thus rank A=1. Therefore (5.1) is equivalent to the following
equation:

(3.2) A (X) dx' + Ao (x)dX® 4 ... 4 A (x) dx" = 0.

The directions dx satisfying (5.2) form a hyperplane at all points (x) and these hyper-
planes establish an (n—1) dimensional distribution Q(x).
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Let % (x) (i=1,2, ..., n) be n local basic vectorfields spanning up a tangential

space T, of M at (x). These vectorfields are differentiable. Now we let us consider n
vectorfields

l1,(X) 0
An(X) OX"

Al X) == 3?:" (x)— (x) 2 =1L .,5—1)k
(5.3)

X, () = {,'ix,(x)

Their matrix is

A
1 0 0...— =2
)"ln
I W | jqe
@) =
’1'-1("—1)
O | S+ RS P
0 0 0 1

Since |Z|'[= 1, the vectors X;(x) (i=1, 2, ..., n) are linearly independent. Moreover,
because the Z;;(x) are differentiable, so are the X,(x). We can see that X, (x)€ Q(x).
Therefore these X, (x) can be regarded as a basic vectorfield of Q(x). Thus Q(x) is a
differentiable distribution®).

It is known that a differentiable distribution is integrable if and only if it is

involutive®). Now we want to find the conditions for the integrability of Q(x). From
(5.3) we have

[ 2(x)  An(x) 9(x) 9(x) Ay(x) 9(X)| _
e Ko Xl = 5 20 o7 ' o7 Iu(d) o |

={A;,.(x) ) (Jp)) 9 [lm(x)
A1 (X) OX® \A1a(x)) Ox°

% [Au(x) 5
in(x)) T 0xP g, (x)

 Jap(x) 0 Ah(x)]} d(x)
A (x) 9 L Au[x))] o0x* °

In order that [X,, X;]€Q(x), the coefficient of 792"- in (5.4) must vanish, so that

by O |'ag _l[lw L[ﬁ]_’_wi[_'?ﬂ] 2o
) T O z,,,] =3 o e ey e w0 7 o D

) See Nomizu [4].
¢) See BisHoP—CRITTENDEN [2].
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must be fulfilled. Thus (5.5) is the necessary and sufficient condition for the inte-
grability of Q(x). Therefore we have

Theorem 4. a) In an affinely connected space, whose coefficients satisfy H},(x)=
=/ (X)H (X)) and never vanish, there exists an n—1 dimensional differentiable
distribution Q(x) such that at every point (x,) in the directions belonging to Q(x,),
the parallel displacement is the ordinary one, being characterized by D& =dEi=0.

b) If the 4;;(x) satisfy the conditions (5.5) then through every point passes a
maximal integral manifold, in this case a hypersurface ®, on which the parallel dis-
placement is the ordinary one.

Corollary 1. In an affinely connected space, whose coefficients satisfy H /% (x)=
= (X)H "(x)(,, with A, =const and never vanish, there exists at every point a
hyperplane in which the parallel displacement is the ordinary one. These hyperplanes

are defined by
Ji.u xi + cC = 0,

¢ being a constant depending on that point x, through which the hyperplane passes.
Now we are able to describe a geometric feature of a tensorial connection in-

duced by certain vector connections of type (A).
Let us consider a reducible tensorial connection induced by the linear vector
(a)

connections H % (x) having the property

(a) (a)
(5.6) H\y(x) = Ag(X)H [ (x) ().
In this case we have according to (1.5) for a parallel displaced 1€ T,

Difria-tm = dthia-tm i i3 G, (X) E)EB) - Elmy dx* =

Jrja...imk

m (a) X

e it .;_{ Z; Hh"';‘(x)ff'ﬂ [C"(ln éi(‘.‘q'—ll)"t‘b*-n-'l) 5‘:’:’51]} dax* = 0.
q’
We have seen that for dx€ Q(x)

(a)
H; fy (x) &g dx* = 0.

That means that in this tensorial connection the parallel displacement of tensors
t€ T, in directions belonging to Q(x) is characterized by Dt*=dr*=0. Thus we have

Theorem 5. If a tensorial comnection is induced by linear vector connections

(a)
H ' (x) of type (5.6) then in the directions belonging to the distribution Q(x) the
parallel displacement of the tensors t€T, is characterized by Dt*=dt*=0.

Corollary 2. a) If the /4 (x) in (5.6) satisfy (5.5) then the parallel displacements
of the tensors 1€ T, on the hypersurface @ are characterized by dr*=0. b) If the
4 1N (5.6) are constant then (5.5) is satisfied and @ is a hyperplane.
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