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Discontinuous groups in homogeneous
Riemannian spaces by classification of D-symbols

By E. MOLN�AR (Budapest)

Abstract. In this paper we classify the 3-dimensional D-symbols [4], [7], [5], [13]
(D,M) up to cardinality |D| = 3 of the vertices of D-diagram D. We describe all the
possible matrix functions M for each D-diagram D such that the combinatorial (topo-
logical) tiling (T , Γ) according to (D,M), will have a true metric realization in a simply
connected homogenous Riemannian 3-space S3, one of the 8 Thurston geometries [1],

[14], [15]: S3, E3, H3, S2 ×R, H2 ×R, ŜL2R, Nil, Sol, with a corresponding group
Γ of isometries in the space S3. Furthermore, we describe the (generalized) orbifold
[1], [2], [6], [14], S3/Γ with the corresponding I-labelled (I = {0, 1, 2, 3 = d}) simplicial
subdivision obtained from each D-symbol.

The phenomenon of Thurston splitting [2], [11], [14], [15] along spherical (S2-)
or Euclidean (toric, E2-) suborbifold also occurs in our new classification that are
summarized in Tables and Figures. As a new tool, we describe algorithms which bring
our D-symbols into canonical ordered forms and list their equivalence classes by a new
‘<’ relation. After having implemented our algorithms to computer we can proceed by
the dimension d of space, by the increasing vertex numbers of D-diagrams as illustrated.
In this paper the combinatorial and differential geometry are combined. We discuss
starting results and raise open problems.

1. Introduction with examples related to Figures and Tables

We start with the familiar face-to-face cube tiling [13] T := Tcube in
the Euclidean space S3 := E3 and illustrate the procedure how to get
its D-symbol (D,M) =: D1 and the corresponding group Γ1(x; y ; z) :=
Γ1(4; 3; 4) in our Figures and Tables.
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Consider the barycentric subdivision C of T . Any simplex C :=
A0A1A2A3 in C has vertices labelled by I := {0, 1, 2, 3} as follows. The
vertex A3 is the midpoint of a cube as a 3-dimensional constituent of T ,
then A2 is that of a quadrate face as an incident 2-dimensional constituent
of T , and so are A1 and A0 for an incident edge and vertex, respectively.
In the same time we introduce the corresponding I-labels for the oppo-
site side faces of C denoted by s0 : A1A2A3, . . . , s3 : A0A1A2 and the
adjacency operations

(1.1) σ0 : · · · · · · , σ1 : −−−, σ2 : −−−−−−, σ3 : ∼∼∼∼∼∼
for the simplicial subdivision C first. Every operation σi, i ∈ I, is an
involutive permutation of C that orders to any C the adjacent σiC along
its common i-face si. We formally introduce the (free) Coxeter group

(1.2) ΣI :=
(
σi, i ∈ I = {0, 1, 2, 3} −−− σiσi =: σ2

i = 1, i ∈ I
)

and its action on C from the left (say). The action of

(1.3) σ := σir · · ·σi2σi1 ∈ ΣI on any C ∈ C
can be visualized by the path through the simplices

(1.4) C, σi1(C), σi2σi1(C):=σi2 (σi1C) , . . . , σir · · ·σi2σi1(C)=:σ(C),

i.e. from C crossing its i1-face, then crossing the i2-face of σi1(C), . . . ,
then entering σ(C) by formula (1.3) trough its ir-face. The simplices of
C can also be considered as vertices of a dual diagram of C, where the σi-
operations are indicated by connecting the vertices with i-coloured edges
as (1.1) shows in the role of colours. We see on our example and require,
in general, that a relation

(1.5)

m−times︷ ︸︸ ︷
(σjσi) · · · (σjσi)(C) =: (σjσi)m(C) = C

holds for every C ∈ C, i, j ∈ I with a minimal natural number m ∈ N in
(1.5), it will be denoted by

(1.6) m =: mij(C).

Thus a symmetric matrix function

(1.7) M : C −→ NI×I , C 7−→ M(C) := mij(C)
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will be introduced which specializes the action of ΣI defined by (1.2). For
our cube tiling this matrix function is constant for every C ∈ C:

(1.8) mij(C) =




1 4 2 2
4 1 3 2
2 3 1 4
2 2 4 1


 .

In general, we assume that an isometry group Γ ≤ Aut T , like a sub-
group of automorphism group of our polyhedral tiling T , leaves invariant
the combinatorial incidence structure of T , and so Γ preserves also the
barycentric subdivision C of T . Our notations

(1.9)
(σiC)γ = σi (Cγ) =: σiC

γ , (C)γ1γ2 := (Cγ1)γ2 =: Cγ1γ2

for any C ∈ C; σi ∈ ΣI and γ, γ1, γ2 ∈ Γ

show these facts. Γ also factorizes the matrix function M by the set D of
Γ-orbits of C:
(1.10) CΓ = {Cγ ∈ C : γ ∈ Γ} =: D ∈ D.

Thus the σi-operations on the set D of simplex orbits are induced by

(1.11)
σi : D 7−→ σiD := σiC

Γ = {σiC
γ ∈ C : γ ∈ Γ}

for any i ∈ I, C ∈ D ∈ D.

The induced matrix function

(1.12)
M : D −→ NI×I , D 7−→M(D) := M(C) := mij(C)

for any C ∈ D ∈ D
and so the D-symbol (D,M) will be introduced. This pair consists of a D-
diagram D (a set, required to be finite, together with given σi-operations
i ∈ I) and of a matrix function M on D with some natural additional
requirements as it follows later in Section 2 under formulas (2.10–13).

In the case of our cube tiling T := Tcube the full isometry group
Γ ∼= Aut T acts simply transitively on the barycentric subdivision of C, i.e.
with exactly one Γ-orbit. Thus our Figures at Γ1 show the D-diagram D1

with 1 vertex and with four loops σi, i ∈ I. The matrix function under
(1.8) provides the presentation of Γ := Pm3̄m as a crystallographic space
group no 221. in the International Tables [8]. This presentation is given in
our Tables D1—Γ1(x; y ; z) by the generating mirror reflections mi, i ∈ I
in the i-face of any fixed fundamental simplex F1 = C1 ∈ C1, and the
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matrix (1.8) provides the relations for Γ1(x; y ; z), now with m01 := x = 4,
m12 := y = 3, m23 := z = 4 as specialized matrix entries.

Every partial D-symbol Di, obtained by cancelling the σi operation
and the i-th row and i-th column of (1.8), defines the matrix function Mi

and the partial D-symbol components (Di,Mi). Any of them character-
izes a local 2-dimensional tiling T i, or more its barycentric subdivision
Ci around a corresponding i-midpoint or around any Γ-images of this i-
midpoints. Our (Di,Mi) describes also the stabilizer subgroup Γi(Ai) of
T i, Ci and of the i-midpoint Ai up to conjugacy in Γ. Now we naturally re-
quire that each Γi, i ∈ I\{0, 3}, is finite group for a spherical, i.e. S2-tiling,
but any of Γ0’s or Γ3’s is permitted to be either a finite spherical group or
a Euclidean crystallographic plane group for an E2-tiling C0, resp. C3, too.
This last requirement allows ideal points (ends) for A0’s or A3’s e.g. in E3,
H3, H2×R. Since we know the plane crystallographic groups [10], [17],
their fundamental domains [9], moreover their D-symbol characterization
[4], [7], this will restrict our choice for the matrix function M. That is
why we have many other tilings for the same D-diagram D1 at Γ1(x; y ; z)
in the Figures and Tables. The unequalities

(1.13.a)
π

x
+

π

y
+

π

2
> π and

π

y
+

π

z
+

π

2
> π

for angle sum of spherical triangles, guarantee that A3 and A0 will be
proper vertices as in the case of our Euclidean cube tiling with Γ1(4; 3; 4)
like a so-called Coxeter reflection group. This and any other Coxeter group
[3], [16] can be described by a Coxeter diagram. Here, to the generating
plane reflections m0, m1, m2, m3, as vertices, we also indicate the defining
relations or mirror face angles at the edges (see in the Tables) which are
well-known. For instance, Γ1(x; y = 2; z) leads to an infinite series of
spherical groups and S3-tilings where the polyhedra of T1 are spherical
with two x-gon faces, each of the x vertices is of valence 2, z lenses meet at
any edge. Γ1(3; 5; 3) leads to a regular icosahedron tiling in the hyperbolic
space H3 where 3 icosahedra meet at each edge. Γ1(3; 3; 6) serves also
a H3-tiling by regular tetrahedra with face angles 2π

6 and so with ideal
vertices. More generally, the equalities

(1.13.b)
π

x
+

π

y
+

π

2
= π, resp.

π

y
+

π

z
+

π

2
= π

describe that A3, resp. A0 is ideal vertex. E.g. Γ1(2; 3; 6) provides an E3-
tiling with regular trigonal infinite prisms; Γ1(6; 3; 6) leads to a H3-tiling
by “regular polyhedra” (H3-honeycomb) whose centre and the vertices all
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are ideal points. This latter regular polyhedron has an inscribed horo-
sphere. The faces are hexagons meeting 3 ones at each ideal vertex as in
the Euclidean plane hexagon tiling. At any edge meet 6 such infinite poly-
hedra. We exclude when Γ3 resp. Γ0 is a H2-plane group, although such
a polyhedron would exist in the projective embedding of H3 with outer
centre A3 resp. outer vertex A0.

Since a tiling (T ,Γ) and its dual (T ?, Γ?) have canonically isomorphic
groups Γ ∼= Γ?, we enumerate only one of them. The metric existence of
any Γ1-tiling rests on the eigenvalue signature of the cosinus matrix

(1.14)




1 − cos π
x 0 0

− cos π
x 1 − cos π

y 0
0 − cos π

y 1 − cos π
z

0 0 − cos π
z 1


 .

As it is well-known, the signature (+ + ++) leads to S3-tilings,
(+ + + 0) to E3-tilings as in our cubic case, and (+ + +−) provides
H3-tilings [1], [3], [12], [16].

Now we analogously sketch the Euclidean rhombododecahedron tiling
T2.1 := Trh under Γ2.1 in Figures and Tables. Trh is embedded into
the cube tiling in the usual way. As any rhomb lies on an edge of a
cube, we illustrate only a part of this tiling with the fundamental domain
A3A2

1A0A1
2A0 of the full isometry group Γ2.1(2 · 2; 3; 4; 3) ∼= Aut Trh.

Our procedure with the barycentric subdivision Crh leads to 2 simplex
orbits under Γ2.1. These are represented by 1A0A1A2A3 ↔ D1 ↔ ©1 and
2A0A1A2A3 ↔ D2 ↔ ©2 in the simplified D-diagram D2.1 where the σ0-
operation (· · · · · · ) is indicated but the loops for σ1-, σ2- and σ3-operations
are not (as also later on).

Our general procedure leads to the presentation of Γ2.1 again as a
Coxeter group with 4 generating reflections m1, m1′ , m2, m3 indicated only
by their subindices in their simplified Coxeter diagram. Here the order x =
y = 3 of product m2m3 expresses that 3 rhombododecahedra meet at any
edges 1A0A1

2A0; v = 3 and w = 4 indicate the edge-valences of the non-
equivalent vertices 1A0 resp. 2A0 on the surfaces of rhombododecahedron.
The most “interesting” information is expressed by 2 · u in the denotation
Γ2.1(2u; v , w ; x = y), u = 2 in our case. That means the rhomb is a
quadrangle: 2 · u-gon (of course), u = 2 refers to the order of reflection-
product m1m1′ (now s1 ⊥ s1′). The coefficient 2 refers to the number of
vertices in the partial diagram only with σ0- and σ1-operations

(1.15) D01 : (
_

^
©1 · · · · · · ©2 _

^
) i.e. (σ1σ0)2Dz = Dz , z = 1, 2.
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So, this refers to the exponent r01 = 2 in the 〈σ0, σ1〉-orbit of D2.1 under
the action of ΣI . Furthermore, all these also refer to the entry m01 =
r01 · u = 2 · u = 4 in the matrix function

(1.16)

M : D2.1 −→ NI×I ,

D1 7−→




1 2u 2 2
2u 1 v 2
2 v 1 x
2 2 x 1


 , D2 7−→




1 2u 2 2
2u 1 w 2
2 w 1 y
2 2 y 1




with (u; v ; w ; x = y) = (2; 3; 4; 3)

as our Tables say in a shorter form.

The same D-diagramD2.1 with (u; v ; w ; x = y) = (2; 3; 5; 3) describes
a H3-tiling with proper vertices, but e.g. (2; 3; 6; 3) gives us a H3-tiling with
A3 and 2A0 as ideal vertices at the absolute, while 1A0 is proper vertex.
Again, the cosinus matrix

(1.17)

©1
©1′
©2
©3




1 − cos π
u − cos π

v 0
− cos π

u 1 − cos π
w 0

− cos π
v − cos π

w 1 − cos π
x

0 0 − cos π
x 1


 ,

according to the simplified Coxeter diagram (Fig. D2.1–Γ2.1), by its sig-
nature, decides the existence of metric realization in S3 (+ + ++), E3

(+ + + 0), H3 (+ + +−). The principal 3×3 minors determine the
qualities of vertices. For instance, the signature of (1, 1′, 2)-minor tells us
the quality of vertex A3. For (u, v , w) = (2, 3, 4) or (2, 3, 5) the signa-
ture is (+ + +), that means A3 is proper. But for (u, v , w) = (2, 3, 6)
that is (+ + 0) indicating an E2-stabilizer for A3, i.e. A3 is ideal vertex.
The signatures of (1, 2, 3)- and (1′, 2, 3)-minors characterize 2A0 and 1A0,
respectively.

Our Tables D2.1–Γ2.1 tell that Γ2.1
∼= Aut T2.1 maximal group iff

v < w , else Γ1(x̄ = 2u; ȳ = v = w ; z̄ = x = y) is a supergroup,
preserving the combinatorial structure of the corresponding tiling T2.1.
Indeed, in case v = w T2.1 has a richer automorphism group. Namely, the
combinatorial reflection (as the operation σ0 : D1 7→ D2 = σ0D1 dictates)

(1.18) m0 : 1A0A1A2A3 7−→ 2A0A1A2A3 of F2.1 = 1A0
2A0A2A3
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(the fundamental domain of Γ2.1(2u; v , w ; x = y) in case v = w) can be
extended to the entire tiling T2.1. In the language of D-symbols we say:
there is a D-morphism, i.e. a surjection

(1.19)
Ψ : D2.1 −→ D1 with (σiD)Ψ = σi(DΨ), M(DΨ) = M(D)

for any D ∈ D2.1, i ∈ I,

preserving the σi-operations and the matrix function with the correspond-
ing parameters (the bars, if occur, only distinguish the letters in the two
symbols). Then T2.1 can be derived from T1 by symmetry breaking [4], [5],
[7], [13].

Our Tab. D2.1–Γ2.1 tells that Γ2.1 is optimally presented by the tiling
T2.1, iff — in addition to the other conditions — 3 ≤ v , x; else Γ1 and
T1 — with appropriate parameters (not detailed) — provide a simpler
presentation for the group Γ2.1. Indeed, if u = 1, then v = w would lead
to non-maximal groups; similarly 3 = u = v = w , when A3 is ideal vertex
with E2-stabilizer. If v = 2 or x = 2 then the Coxeter diagram reduces to
that of Γ1.

Our Tab. D2.1–Γ2.1 allows the condition v ≤ w by logical symmetry.
Indeed, if v > w holds, we change 1 ↔ 2 in the notations of vertices of
D2.1, to obtain our case.

After this detailed introduction we discuss for d = 3 more concisely
the inverse problem: For each D-diagram D of a classification list up to
cardinality |D| = 3 we give the possible matrix functions M so that each
D-symbol (D,M) shall be realizable, first by a combinatorial tiling (T , Γ)
in a simply connected topological 3-space S3. In this way (D,M) will
represent a (generalized) good orbifold [1], [2], [6], [14] O3(X 3,A), i.e. a
topological 3-space X 3 with a compatibile atlas A, where each point P has
a neighbourhood UP inA that is homeomorphic to R3 factorized by a finite
group GO fixing the origin O ∈ R3, corresponding to P ∈ X 3. Our natural
generalization allows finitely many “ideal” points in X 3, any of them has
neighbourhood homeomorphic to (R2/G)×R where G is a Euclidean plane
crystallographic group that acts on R3, extended along a fixed plane R2,
preserving its halfspaces. The “ideal” point, considered in X 3, corresponds
to the common ideal point +∞ of R-fibers of (R2/G)×R (embedded in
the projective sphere PS3 of R3, but it is not important now [12], [16]).
Each orbifold and tiling (T ,Γ) will be given by a canonical fundamental
domain FΓ as the D-symbol dictates by our later Algorithm 2.3. FΓ is
endowed by an involutive face pairing I (identifications) which generates
the group Γ. The symbol (D,M) provides also the defining relations for Γ.
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Altough the general criteria for isometric realizations have not been
completely determined yet (these are related with the Thurston conjec-
ture [1], [2], [14], [15], see our necessary assumption and conjecture at
Alg. 2.3.e and papers [12], [13]), second we give also the metric realiza-
tion for each D-symbol (D,M) and tiling (T , Γ), if exists, in a Thurston
geometry from the list in the Abstract. If such a metric realization does
not exist, i.e. our good orbifold is non-geometric [6], [11] then we give the
corresponding S2- and E2-suborbifolds, respectively, and splittings along
them, according to the Thurston’s orbifold conjecture. All the results are
summarized in the Figures and Tables as indicated above by the starting
examples.

2. On classification of D-diagrams and D-symbols, in general

Definition 2.1 of a D-diagram (to honour of B. N. Delone (De-
launay), M. S. Delaney and A. W. M. Dress [4], [5], [7], [13]): Let
D := (ΣI ,D) a finite set endowed by d + 1 involutive permutations as
σi-operations i ∈ I = {0, 1, . . . , d} generating the left hand side action of
a free Coxeter group ΣI by (1.2) which is transitive on D. Particularly,
think of dimension d = 3, and use the conventions (1.1) in Sect. 1. Any
element Dz ↔ z of D can be considered as a vertex of an I-coloured
graph, called D-diagram D, or more visually, a vertex corresponds to an
R-coordinatized I-labelled simplex (Dz ;∆I) as a Cartesian product with
the standard simplex

∆I =

{
x := (x0, x1, . . . , xd) ∈ RI : 0 ≤ xk for any k ∈ I and

d∑

k=0

xk = 1

}

its i-facets ∆i
I :=

{
x ∈ ∆I : xi = 0

}
and i-vertices(2.1)

Ai

(
aj

i

) ∈ ∆I by aj
i = δj

i the Kronecker symbol i, j ∈ I.

Here the simplex ∆I wears the usual affine topology. D is assumed to
have the discrete topology. We imagine as many simplices (D1;∆I), . . . ,
(Dn;∆I) as many elements D has, n := |D| denotes the cardinality of D.
That means, we can introduce the standard topological realization, denoted
by Top(ΣI ,D) := (D;∆I)/ ∼, as the Cartesian product with pointwise
identifications ∼: (D;y) ∼ (σiD; y) for every D ∈ D and y ∈ ∆i

I , i ∈ I.
¤
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As a tool for visualization, we may introduce the “local reflection”

(2.2) σi : (D;x) 7−→ σi(D;x) := (σiD; x) for every x ∈ ∆I

in the facet (D;∆i
I) ∼ (σiD; ∆i

I), fixed pointwise under σi for a “local”
D ∈ D, i ∈ I. Then we can define and visualize the action of ΣI on D
analogously as under formulas (1.3–4). Furthermore we can introduce

Definition 2.2, the action of the (extended) fundamental group of
Top(ΣI , D(D1))

(2.3) π1(ΣI , D(D1)) := ΣI(D1) := {σ ∈ ΣI : σ(D1) = D1}
is well-defined up to a conjugacy in ΣI related to a starting element
D1 ∈ D. ¤

Indeed, if D = %D1 is an arbitrary vertex of the ΣI -connected D with
% ∈ ΣI , then ΣI(D) = %ΣI(D1)%−1.

Definition 2.3. The universal covering space T̃op(ΣI ,D) :=
(ΣI ;D;∆I)/∼ of Top(ΣI ,D) can be defined, first again, as a Cartesian
product (ΣI ;D;∆I) with the discrete topology of (ΣI ;D) and the usual
affine topology on ∆I . Second again, we introduce identifications on
(ΣI ;D;∆I)

(2.4)

∼: (%σ; D1;x) ∼ (%σ%−1; D;x)

and (%σ%−1; D;y) ∼ (σi%σ%−1; D;y)

for any D1 = σD1, D = %D1 in (ΣI ;D),

x ∈ ∆I , y ∈ ∆i
I , i ∈ I. ¤

If σD1 = D1 = τD1, then στD1 = D1 also holds, i.e. σ, τ, στ ∈
ΣI(D1). To ΣI(D1) we correspond the group Σ̃I(D) of covering transfor-
mations of T̃op(ΣI ,D) which acts from the right, written exponentially,
and preserves the ΣI -action on simplices of T̃op(ΣI ,D) as

(2.5) (σiD)σ̃ = σi(Dσ̃) =: σiD
σ̃, (D)σ̃τ̃ :=

(
Dσ̃

)τ̃ = Dfστ

will denote. Indeed, we define for D := (1; D;∆I) ∼ (%; D1;∆I) =: %D1 in
T̃op(ΣI ,D)

(2.6) Dσ̃ := (%D1)σ̃ := %σD1 = %σ%−1D iff σD1 = D1 in (ΣI ,D).

Then

(σiD)σ̃ := (σi%D1)σ̃ := (σi%)σD1 = σi%σ%−1D = σi

(
Dσ̃

)
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hold, indeed. Moreover,
(
Dσ̃

)τ̃ := (%σD1)τ̃ := (%σ)τD1 = %(στ)%−1D =: Dfστ

show also the homomorphism Φ of the fundamental group ΣI(D1) of
Top(ΣI ,D(D1)) onto the covering transformation group Σ̃I(D) of
T̃op(ΣI ,D) by

(2.7) Φ : ΣI(D1) −→ Σ̃I(D), σ 7−→ {
%σ%−1 : % ∈ Σi

}
=: σ̃.

A standard argumentation shows that our Φ is even an isomorphism.
Here we do not prove this fact, only mention that it is a byproduct from
a more general construction for universal covering of a good orbifold [1],
[11], [14].

Definition 2.4. The D-diagram (ΣI ,D) automaticly induces its subdi-
agram components c(ΣJ ,D), J ⊂ I, which characterize lower-dimensional
parts of Top(ΣI ,D). Thus, the components cDij , i < j ∈ I with their σi-
and σj-operations define a symmetric matrix function with entries from
the natural numbers N:

(2.8)
R : D −→ NI×I ; D 7−→ rij(D), i, j ∈ I

by rij(D) := min
{
r ∈ N : (σjσi)r(D) = D

}

with the following requirements:

(2.9)

rii(D) = 1; rij(D) = rji(D) = rji(σiD);

rij(D) ∈ {1, 2} if 1 < j − i

for any D ∈ D, i < j ∈ I. ¤

Definition 2.5 of a D-symbol (D,M). A D-diagram (ΣI ,D) together
with a matrix function, with entries from N∞ := N ∪∞:

(2.10) M : D −→ N∞I×I ; D 7−→M(D) := mij(D) := rij(D) · vij(D)

with vij(D) ∈ N∞ as rotational orders or branching numbers, is called a
D-symbol (Delone–Delaney–Dress-symbol), if the following requirements
are fulfilled:

mii(D) = 1; mij(D) = mji(D) = mji(σiD);(2.11)

mij(D) = 2 if 1 < j − i; mij(D) ≥ 2 if 1 = j − i;(2.12)

(σjσi)mij(D)(D) = D if mij 6= ∞(2.13)

for any D ∈ D and i < j ∈ I. ¤
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From our present investigations mij(D) = ∞ = vij(D) will be ex-
cluded. In case d = 3 we have required proper (d− 2)-faces, i.e. edges for
the simplices in the barycentric subdivision C of a tiling T being described
later. Of course (2.10) provides dependences among the requirements for
the functions rij , vij , mij . These are constant on any component cDij of
(D,M), i < j ∈ I.

Definition 2.6 of realization. To a given D-symbol (D,M) we want
to construct a simply connected d-space Sd, moreover a tiling T in Sd

with a barycentric subdivision C of I-labelled simplices. The left action
of ΣI should be transitive on C and compatible with the right action of a
group Γ ≤ Aut T . We require that the orbit space C/Γ and the ΣI action,
induced on it, is just isomorphic to D := (ΣI ,D). Furthermore, we also
require that for any C ∈ D ∈ C/Γ = D the matrix function M provides
the minimal exponent mij(D) =: m so that (σjσi)m(C) = C holds for
any i, j ∈ I. If such a construction exists, then we call it a topological
(orbifold) realization of D-symbol (D,M). Analogously we can define
the other realizations, e.g. like metric realization in a space of constant
curvature with group Γ of isometries, or in other spaces. The existence of
such a realization is questionable, in general. ¤

In our papers [12], [13] we proposed a procedure for such a construc-
tion, in general. The basic idea was that the D-symbol (D,M) itself
dictates how to glue a fundamental domain F from |D| =: n simplices,
and how to pair the free facets of F to generate a group Γ and a funda-
mental tiling 〈F , Γ〉 with Γ-images of F . The free (d−2)-face classes of F ,
by means of the matrix function M, tell us how to glue the Γ-images of F
at the (d − 2)-faces. Moreover, they tell us the defining relations for the
face pairing generators of Γ by so-called Poincaré–Aleksandrov algorithm
[1], [12], [16]. Moreover, the tiling 〈F , Γ〉 just defines a simply connected
space Sd, if the fundamental domain F is nice enough, e.g. the interior of
its each k-face is homeomorphic to an open k-simplex (k ∈ I). The group
Γ, however, may collapse by the consequences of the defining relations
above. This is the case, e.g. if one from the four types of 2-dimensional
bad orbifolds [11], [12], [14] does occur among the partial D-symbol com-
ponents of (D,M) with any 3 colours from I (see Alg. 2.3.e, (2.16)). Then
the rotational orders vij and so mij should be reduced according to (2.10).

Our classification will show these phenomena on concrete examples.

Now we give a general scheme for classification of D-diagrams and
D-symbols. This is our new initiative in this paper, although this type of
method is well-known in combinatorics.
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1. We define an ordered form for each D-symbol (ΣI , D(D1), M) with
starting element D1 ↔ ©1 by numbering the other elements. So we
can define a distance between D1 and Dk as D1Dk = k− 1. Choosing
another starting element, a (non-symmetric) distance function can be
defined in the whole D-diagram, independent of M.

2. We define a ‘<’ relation between any two D-symbols each with distin-
guished starting element.

3. On the base of 1–2 we define a smallest numbering for a fixed D-
symbol to choose a representative from isomorphic variants.

4. Comparing the representatives, we list the D-symbols increasingly.
5. To each D-symbol (D,M) in the list we determine its automorphism

group Aut(D,M) by the step 3. That is not trivial iff we have more
smallest numberings. We take the orbits of Aut(D,M) as elements
from a smaller D-symbol (Dn,M) with the induced ΣI -action and
the same matrix function. This is called the normalizer D-symbol of
(D,M).

6. As usual [4], [5], [7], [13] we introduce to each D-symbol (D,M) its
smallest D-morphic image (D?,M?) if there is a surjective mapping

(2.14)

Ψ: D −→ D?, D 7−→ DΨ

with (σiD)Ψ = σi(DΨ) and M(D) = M?(DΨ)
for each D ∈ D, i ∈ I.

This characterizes isomorphic tilings T ∼= T ? with groups Γ ≤ Γ? ∼=
Aut T , the maximal group for T ∼= T ?. If Ψ above is bijective, then
it is a D-isomorphism. If |D?| < |D| stands for the cardinalities,
then (T , Γ) is called a symmetry breaking of (T ?,Γ?) according to
the D-symbols, respectively.

7. We arrange the D-symbols into topological families. Each family is
represented by the common smallest D-morphic image, i.e. by the
maximal group Γ = Aut T .

Algorithm 2.1. Let (ΣI , D(D1)) be the D-diagram of a D-symbol with
a starting element D1 ∈ D. We number the other elements (vertices) of
D by the ΣI -operations according to the natural increasing ordering of
I = {0, 1, 2, . . . , d} as follows:
a) Assume, we have already numbered the elements D1, . . . , Dr, r <

|D| =: n. Consider σ0(Dr), σ1(Dr). The first of them, not listed yet,
will be Dr+1 if exists.
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b) Else we take σ2(Dr), . . . , σ2(D1); . . . ; σd(Dr), . . . , σd(D1). The first
new one will be Dr+1.

c) Then we proceed with r → r + 1 as above. Since ΣI acts transitively
on the finite D, we end at Dn, n = |D|.

d) The distance of any two elements Dx, Dy can be obtained: We choose
Dx = D1′ for starting element and proceed as above. If we get Dy =
Dk′ then the distance is DxDy = k − 1. ¤
Algorithm 2.2. Let (ΣI , D(D1), M) = D and (Σ′I′ , D′(D1′), M′) =:

D′ be two D-symbols each with distinguished starting element. We define
D < D′ by the following preferences a–d:
a) |I| < |I ′| (| · | denotes cardinality); preference of dimension.
b) If both dimensions =: d then |D| < |D′|; preference of cardinality.
c) If both cardinaties =: n then we compare distances in D and D′,

respectively. Consider equally numbered elements and their σi-images
in reverse preference in I = I ′:

– D1σdD1 < D1′σdD1′ ; if ‘=’ holds then D2σdD2 < D2′σdD2′ ; . . . ;
if ‘=’ then DnσdDn < Dn′σdDn′ ; of course, it is enough to go till
n− 1;

– if ‘=’ then D1σd−1D1 < D1′σd−1D1′ ; . . . ;
if ‘=’ then Dnσd−1Dn < Dn′σd−1Dn′ ;

...
– if ‘=’ then D1σ0D1 < D1′σ0D1′ ; . . . ;

if ‘=’ then Dnσ0Dn < Dn′σ0Dn′ .
d) If ‘=’ stands in each place before, then the D-diagrams are isomor-

phic. Then come the matrix functions by increasing preferences in
their 01, 12, . . . , (d − 1)d entries for the equal components of D01,
D12, . . . ,D(d−1)d:

– m01(D1) < m′
01(D1′); if ‘=’ then m01(D2) < m′

01(D2′); . . . ; if
‘=’ then m01(Dn) < m′

01(Dn′); of course, we compare whole 01
orbits, as later on, too;

– if ‘=’ then m12(D1) < m′
12(D1′); . . . ; if ‘=’ then m12(Dn) <

m′
12(Dn′);

...
– if ‘=’ then m(d−1)d(D1) < m′

(d−1)d(D1′); . . . ; if ‘=’ then
m(d−1)d(Dn) < m′

(d−1)d(Dn′).

e) If ‘=’ stands in each place before, then the two D-symbols clearly are
D-isomorphic and lie in the same equivalence class. ¤
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Proposition 2.1. Our ‘<’ relation is trichotom and transitive on the
equivalence classes of D-symbols with distinguished starting elements.

The proof is obvious. In each place we compare natural numbers,
within zero, whose ordering satisfies these properties. ¤

We remark that other preferences are also possible in Alg. 2.1.a or in
Alg. 2.2.c: These would lead to other orderings, considered less natural
for our reason. Our preferences can be applied for generating our list of
D-symbols systematically. We do not give further details since we plan
another publication about this topic.

Algorithm 2.3 of constructing canonical fundamental domain F and
the tiling (T ,Γ) for a D-symbol. Consider D := (ΣI , D(D1), M) by its
smallest numbering. We proceed by Alg. 2.1: Glue D2 = σi1(D1) to D1 by
the first non-trivial σi1-operation in Alg. 2.1.a, i.e. form (D1;∆I)∪(D2;∆I)
identified along (D1;∆i1

I ) ∼ (D2;∆i1
I ) and form a convex affine chart to

copy them in Rd.
a) Assume, we have already glued (D1;∆I) ∪ · · · ∪ (Dr;∆I) by the cor-

responding σi1−, . . . , σir−1 -operations and imagine a convex “affine
chart” in Rd as follows. Dr+1 join Dr along their free ir-facet, i.e.
Dr is not σir -related to the former simplices, and we keep convexity.
(The convexity of a metric realization of F is not guaranteed yet, in
general.)

b) Else all facets of Dr are not free, either glued (covered) or paired by
former facets. Any pair provides either a generating transformation or
the identity for the group Γ. This also depends on the matrix function
M, namely on the rotational orders vij in (2.10) (cf. the Alg. 6.1 in
our paper [12]).

c) At the end we have F glued of n := |D| simplices, its interior is home-
omorphic to an open d-simplex. The paired facets of F provide a
complete system I of generators for Γ. The (d− 2)-faces of simplices
in F are either covered, i.e. they are surrounded by facets as a con-
sequence of M; or they form Γ-equivalence classes, and M implies
for each class a defining relation for Γ by the Poincaré–Aleksandrov
algorithm [12], as we indicated after Def. 2.6.

d) Consider the partial D-symbol (ΣI\{k}, Dk, Mk) obtained from D by
deleting the σk-operation and by restricting M, k ∈ I. Then Dk falls
into connected components. Any component cDk describes a (d− 1)-
dimensional tiling (T k, Γk) and its simplicial subdivision around the
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k-labelled midpoint of the tiling T and around the Γ-images of this
k-midpoint. Thus the components of Dk, k ∈ I, give a complete
combinatorial description of our tiling (T , Γ) for D, if the existence is
guaranteed (cf. Def. 2.6).

e) Consider any partial D-symbol (Σijk,Dijk,Mijk) =: Dijk obtained
from D by keeping the σi-, σj-, σk-operations and deleting the others.
Moreover, we restrict the matrix function M on entries mij , mik, mjk

for any i < j < k ∈ I. Think of d = 3 where steps d and e coincide!
Any connected component cDijk is a 2-dimensional D-symbol, and
it may determine a corresponding tiling (cTijk, cΓijk) and a simply
connected covering 2-surface S2 dually round the (d−3)-simplex at the
intersection of corresponding i-facets, j-facets and k-facets according
to our topological realization Top(ΣI ,D) in Def. 2.1.
We know that our tiling (cTijk, cΓijk) may be equivariant to a spherical
(S2), Euclidean (E2), hyperbolic (H2) tiling if the curvature [4]

(2.15)

K(cDijk)

=
∑

D∈cDijk

(
1

mij(D)
+

1
mik(D)

+
1

mjk(D)
− 1

)
>
=
<

0,

respectively. Moreover, this condition is also satisfactory if in the first
(‘>’) case the four types of bad orbifolds are excluded. We give them
by the signature [9], [10], [17] (see also [4], [7]):

(2.16)

(+, 0; [u]; { }), 1 < u;

(+, 0; [u, v]; { }), 1 < u < v;

(+, 0; [ ]; {(u)}), 1 < u;

(+, 0; [ ]; {(u, v)}), 1 < u < v. ¤

Our general conjecture is that any D-symbol (D,M) determines its
topological realization (T ,Γ) in a simply connected space Sd if the funda-
mental domain F of (D,M), with its facet pairings and presentation by
Alg. 2.3, represents a good orbifold, i.e., if any 2-dimensional “suborbifold
induced by (D,M)” is a good 2-orbifold.

Although the last part of this conjecture is “folklore” by an analo-
gous Thurston’s conjecture for good orbifolds, the author intends to give
a complete formulation and proof, since it seems to be not published yet,
in general. In our case d = 3 the proper l-vertices will be characterized
by (2.15) if {i, j, k, l} = {0, 1, 2, 3} = I and K(cDl) > 0 if (2.16) is ex-
cluded. If l = 0 or 3 then K(cDl) = 0 is also allowed for ideal 0-vertex and
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3-centre as indicated in Sect. 1. The curvature K(cDl) < 0 is excluded
from our investigation now. But the above subsymbols do not describe
the 2-suborbifolds of (D,M) yet. The examination of the fundamental
domain by (D,M) provides still a local method for investigating these
2-suborbifolds. Section 3 will show the difficulties of such investigations
which are not algorithmized yet (see also [12]).

We do not describe the 8 Thurston geometries, listed in the Abstract,
since in our classification d = 3, till |D| =: n = 3 only few of them occur
[1], [14], [15]. We suggest to the reader for studying again our introductory
examples in Sect. 1. Then turn to Sect. 3 and to Figures and Tables. We
shall elaborate the case at D3.2–Γ3.2 in details. see also the corresponding
Fig. 3.2. The other cases will be described more sketchily.

3. Classification of D-symbols and their optimal realizations,
d = 3, 1 ≤ |D| ≤ 3

In the introduction we have already discussed the series of matrix
functions belonging to the D-diagram of 1 vertex with 4 loops Fig. Γ1

and Tab. Γ1 show the phenomena. The other cases will be enumerated
in similar manner, so as Γ2.1 where 2 ≤ x = y just refer to the situation
mentioned in Alg. 2.3.e. Namely, our Tab. D2.1—Γ2.1 contains a date

(3.1) Γ1(A1) = (+, 0; [ ]; {(x, y)}) =⇒ x = y

else the partial diagram D023 = D1 with M1 : 2 ≤ x 6= y would lead to
the partial tiling (T 1, Γ1) around the 1-midpoint A1, where reflections m2

and m3 act on a sphere S2 with different dihedral orders x 6= y at the
opposite poles which is impossible. This would be the fourth type of bad
orbifolds in (2.16).

Now we run through the 15 classes of D-diagrams with 2 elements
(vertices).

D2.2—Γ2.2 leads to 5 reflections, indicated at the simplified Coxeter dia-
gram in Fig. Γ2.2. We briefly describe every matrix functionM, analogous
to (1.16). For instance m01(D1) = m01(D2) = 2u in D2.2—Γ2.2 describes
the reflections m0 and m′

0 at A2A3 by the relation (m0m
′
0)

u. The sig-
nature of Γ3(A3), or the curvature formula by (2.15) with (2 ≤ u, v) for
optimal cases yield

K(D012)=
(

1
2u

+
1
2v
−1

2

)
+

(
1
2u

+
1
2v
−1

2

)
=

1
u

+
1
v
−1 ≥ 0(3.2)

if u = v = 2, then K(D012) = 0,
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i.e. Γ3(A3) is an E2-group and A3 is an ideal point. In Tab. D2.2—Γ2.2

we find the series of H2×R realizations (u; v ; w ; x) = (2; 2; 2; x) depending
on x ≥ 3. Indeed, Fig. Γ2.2 show the triangle A3A2

2A1 with angles 0, π
2 ,

π
x realizable in H2 and the “prism” over it in direction R with A3A2

2A1-
congruent “parallel sections”, e.g. A3

1A1A0. To the H3-realizations we
start with the proper or ideal vertex-domain A0 with face angles π

v = π
2 ,

π
w , π

x at the rays A0A3, A0
1A1, A0

2A1, respectively. The plane 1A1A2A3

is orthogonal to the ray A0
1A1 and hyperbolic parallel with the ray A0A3.

This determines the place of 1A1 uniquely. Similarly, we get 2A1, then
A2. In the ideal point A3 there meet 4 planes with 3 rectangles at A0A3,
1A1A3, 2A1A3, then we have perpendicular faces also at A2A3, and we are
done with the construction in H3.
Fig. and Tab. D2.3—Γ2.3 show that m23(D1) = w = x = m23(D2) is
necessary to a topological realization, again by Γ1(A1) and (2.16.). But
then Γ1(x̄ = u; ȳ = 2v ; z̄ = w) is a normalizer supergroup of Γ2.3

(bars only distinguish the parameters of the two group series). We have as
many S3-, H3-realization as the supergroup series tell us, we have the only
degenerate E3-realizations with A0 and A′0 as Γ-equivalent ideal vertices.
“D2.4—Γ2.4 is dual to D2.2—Γ2.2” means that if we change σ0 → σ̄3,
σ1 → σ̄2, σ2 → σ̄1, σ3 → σ̄0 in D-diagram D2.2 and the corresponding
matrix entries m01 ↔ m23, m12 ↔ m12 then we get D-symbol D2.4. The
group Γ2.4 is equivariantly isomorphic to Γ2.2, the equivariance is defined
by the duality above.
D2.5—Γ2.5 leads to non-optimal groups and tilings with D-normalizer su-
pergroups Γ1 by parameters x̄ = 2u, ȳ = 2v , z̄ = 2w . Thus only u = 1,
v = 2, w = 2 leads to a degenerate E3-realization according to our as-
sumptions.
D2.6—Γ2.6 leads to non-optimal groups and tilings again. D2.6 is a self-
dual diagram, so m01 := 2u ≤ 2w =: m23 can be assumed to obtain
non-equivariant groups. From Γ1(x̄ = 2u; ȳ = v ; z̄ = 2w) we derive the
corresponding metric tilings, e.g. u = 2, v = 3, w = 3 yield the marked
cube tiling in E3 with the crystallographic group Pm3̄.
D2.7—Γ2.7 yields again the D-normalizer supergroups Γ1(x̄ = u; ȳ =
v ; z̄ = 2w), and e.g. the E3-tiling with marked cubes under the group
226.Fm3̄c.
D2.8—Γ2.8 leads to dually equivariant tilings to D2.1—Γ2.1.
D2.9—Γ2.9 leads to self-dual optimal tilings if v ≤ w . Now u ≤ x is
assumed. The reflection subgroups, with Coxeter diagram pictured there,
are well-known [16]. These imply our cases, among them 2 Euclidean ones.
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The cases D2.10—Γ2.10, . . . , D2.14—Γ2.14 lead to analogous tilings.
D2.15—Γ2.15 leads to self-dual non-optimal tilings with D-normalizer su-
pergroups Γ1(u; v ;w) just with the same parameters. An E3-tiling is the
cube tiling under 207.P432.

Next we consider D-diagrams with 3 vertices. The first, by Alg. 2.2,

D3.1—Γ3.1 yields Coxeter groups with diagrams in our picture. So again,
s = t is a necessary condition for topological realization in Tab. D3.1—
Γ3.1. We find that our assumptions exclude the optimal realizations.
D3.2—Γ3.2 is our most interesting self-dual case. The fundamental do-
main F consist of 3 glued simplices with 6 free reflection facets, at most.
Our assumptions allow this maximal number of reflections for parameters
(p; q; r; s; t) = (2; 2; 2; 2; 2) where

(3.3) Γ3(A3) = (+, 0; [ ]; {(r, 2, p, q)})
is the stabilizer of A3, and

(3.4) Γ0(A0) = (+, 0; [ ]; {(r, 2, t, s)})
the stabilizer of A0 are just E2-groups. This Coxeter diagram and the
corresponding last picture show that non-isometric realizations occur in
the 8 Thurston geometries. The reason is the suborbifold E2/pmm whose
groups are generated by 4 reflections

(3.5)

m′
0 : 2A1

2A2A3
1A2, m1 : 2A2A3A0,

m2 : A3A0
1A1, m3 : A0

1A1
1A2

2A1

with (m′
0m1)2 = (m1m2)2 = (m2m3)2 = (m3m

′
0)

2 = 1.

The corresponding surface is transversally placed in the middle of F up
to equivariant isotopy. Splitting our F along this E2-suborbifold [2], we
get two pieces, both can wear the metric of a H2×R-orbifold as the last
picture shows. Each H2-component is a Lambert quadrangle with ideal
vertex (at A3 and A0, respectively) and 3 rectangles.

We have 5 generating reflections if p = 1, i.e. m0 = m′
0, or r = 1, i.e.

m1 = m2 as our specialized Coxeter diagrams indicate in the second row
of our picture page Γ3.2.

Our case p = 1; 1 < r, t, s with non-H2-stabilizer for A0, implies
s = 2 = r = t, and the earlier D2.2—Γ2.2 (ū = t = 2; v̄ = r = 2; w̄ =
2; x̄ = q) provides simpler presentation. The choice p = 1, t = 1 implies
Γ1 again.
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The case r = 1 (see the corresponding Coxeter diagram and Fig. Γ3.2

in the 3rd row) leads to the most interesting optimal cases. An exceptional
non-maximal group Γ3.2(2p = 4 = q; 3r = 3; s = 4 = 2t) is just the E3

space group 123.P4/mmm to the cubic tiling with maximal supergroup
Γ1(4; 3; 4). The E3-optimal realization with Γ3.2(2 · 2, 3; 3 · 1; 6, 2 · 2) ∼=
P6/mmm leads to a Euclidean tiling with regular trigonal prisms.

In general, r = 1, p = 2 = t leads to prismatic tilings

(3.6) in S2×R, if
1
q

+
1
s

>
1
2
; in H2×R, if

1
q

+
1
s

<
1
2
.

Non-geometric good orbifolds occur in the following cases

(3.7)
r = 1 < p, 3 ≤ t and

1
q

+
1
s

>
1
2
, i.e. S2 − splittings

or
1
q

+
1
s

=
1
2

i.e. E2 − splittings

are possible in the “middle” of our fundamental domain F . The two
splitted parts of F have the Coxeter diagrams as our Fig. Γ3.2 in the 3rd
row shows. Each S2-splitting becomes a proper point of the corresponding
part. Each E2-splitting becomes an ideal point. The Coxeter diagrams
serve us the isometric realizations, may be different for the two parts.

The cases

(3.8) r = 1 < p, 3 ≤ t and
1
q

+
1
s

<
1
2
, i.e. H2 − suborbifolds

characterize H3-realizations, may be not optimal. For instance Γ3.2(2p =
4 = q; 3r = 3; s = 6 = 2t) leads to the maximal H3-group Γ1(x =
4; y = 3; z = 6) and tiling T1 of cubes with proper A3 and ideal A0.
Γ3.2(2p = 4 = q; 3r = 3; s = 5, 2t = 6) leads to a nice maximal H3-
tiling T with Γ3.2 = Aut T . The tiles are cubes with 1 Γ-class of proper
vertices but 2 Γ-classes of faces and edges, the latter ones are surrounded
by m12(D1) = s = 5 and m12(D2) = m12(D3) = 2t = 6 neighbours,
respectively.

D3.3—Γ3.3 leads to maximal tilings and groups if r 6= 2s. Our Figures and
Tables show the cases in details. From Γ3(A3) we see that only (p; q) =
(2; 1) and (1; 2) provide optimal cases with ideal centre A3. Γ0(A0, A

′
0)

shows many values of parameters when they are proper or ideal vertices.
Our pictures indicate the fundamental domain F and its r-image about
2A1A3 together, so that we see a domain whose reflection images fil the
space. Again, we have obtained 2 infinite series of optimal tilings in H2×R
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according to running s (left hand side) resp. r (right hand side picture), the
R-direction is A0A

′
0 resp. A0

1A1. We have interesting H3-tilings, optimal
and non-optimal, too. An optimal H3-series is (p; q; r; s) = (2; 1; r; 2)
3 ≤ r. But the case r = 4 is not maximal because r = 2s. Then the
maximal Γ1(x̄ = 3p = 6; ȳ = 3q = 3; z̄ = r = 2s = 4) provides a regular
hyperbolic tiling with “horospherical” solid: A3 is ideal, 3 hexagons meet
in each proper vertex, any edge is surrounded 4 solids (the edges fall into
2 classes under the original Γ3.3).

Remark 1. For d = 3, |D| =: n = 4 we have 82 non-isomorphic D-
diagrams listed by Alg. 2.2 for another publication. An important open
problem is, how many non-isomorphic D-diagrams exist for a fixed dimen-
sion d, and fixed n := |D|. Give an estimate, e.g. a good upper bound, at
least.

Remark 2. For any space group in E3 the minimal D-symbol seems
to be very important. For E2 and S2 this is simple and solved. For E3 we
have determined the minimal D-symbol in cases of many space groups, we
are working on this problem.

Remark 3. While having prepared this paper, I have learned that
O. Delgado Friedrichs: Euclidicity criteria for three-dimensional
branched triangulations, Ph. D. Dissertation, Bielefeld, 1994 – among
other results – enumerated all D-symbols up to cardinality |D| = 10 which
have E3-realizations.

Remark 4. The recent paper “Higher toroidal regular polytopes” by
P. McMullen and E. Schulte, Advances in Math. 117 (1996), 17–51
determines nearly all regular toroids for each dimension. This corresponds
to D-symbols on 1 node where (T , Γ) is realized on the Euclidean n-torus.
For this information and other useful advices I would like to thank the
Referees.

The author thanks I. Prok for typesetting the text in TEX and
J. Szirmai for drawing the figures.
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Tables

D1−Γ1(x; y ; z) 2 ≤ x, y , z – Sd: x ≤ z – Γ1 is maximal • m0 : A1A2A3,
m1 : A2A3A0, m2 : A3A0A1, m3 : A0A1A2 – m2

0, m2
1, m2

2, m2
3; (m0m1)x ,

(m0m2)2, (m0m3)2; (m1m2)y , (m1m3)2; (m2m3)z •
Γ3(A3) = (+, 0; [ ]; {(x, 2, y)}) – (x, y)– S2 : (2, y), (3, 3), (3, 4), (3, 5) –
E2 : (3, 6), (4, 4) – H2 : else ◦ Γ0(A0) = (+, 0; [ ]; {(y , 2, z)}) – (y , z)–
S2 : (2, z), (3, 3), (3, 4), (3, 5) – E2 : (3, 6), (4, 4) – H2 : else • (x; y ; z)–
S3 : (x; 2; z), (2; 3; 3), (2; 3; 4), (2; 3; 5); (2; 4; 3), (2; 5; 3); (3; 3; 3), (3; 3; 4),
(3; 3; 5), (3; 4; 3) – E3 : (4; 3; 4) 221.Pm3̄m / (2; 3; 6), (2; 4; 4), (2; 6; 3) A0

id. v. – H3 : (3; 5; 3), (4; 3; 5), (5; 3; 5) proper vertices / (3; 3; 6), (3; 4; 4),
(4; 3; 6), (5; 3; 6), A0 id. v. / (3; 6; 3), (4; 4; 4), (6; 3; 6) A3 and A0 ideal
vertices / else outer vertex occurs ¤

D2.1—Γ2.1(2u; v , w ; x = y) 1 ≤ u; 2 ≤ v ≤ w ; 2 ≤ x – Γ2.1 is
max. iff v < w ; else Γ1(2u; v = w ; x = y) is supergroup – Γ2.1 is
optimal iff, in addition, 3 ≤ v , x; else Γ1 provides simpler presentation. •
m1 : A2A3

1A0, m′
1 : A2A3

2A0, m2 : A3
1A0

2A0, m3 : 1A0
2A0A2 – m2

1, m′
1
2,

m2
2, m2

3; (m1m
′
1)

u, (m1m2)v , (m′
1m2)w , (m1m3)2, (m′

1m3)2; (m2m3)x •
Γ3(A3) = (+, 0; [ ]; {(u, v , w)}) ⇒ 2 ≤ u – (u, v , w)– S2 : (2, 3, 4), (2, 3, 5)
– E2 : (2, 3, 6) – H2 : else ◦ Γ1(A1) = (+, 0; [ ]; {(x, y)}) ⇒ x = y ◦
Γ0(1A0) = (+, 0; [ ]; {(v , 2, x)}) – (v , x)– S2 : (3, 3), (3, 4), (3, 5) – E2 :
(3, 6), (4, 4) – H2 : else ◦ Γ0(2A0) = (+, 0; [ ]; {(w , 2, y)}) – (w , y)– S2 :
(3, 3); (3, 4), (3, 5) – E2 : (3, 6), (4, 4) – H2 : else • (u; v ; w ; x)– E3 :
(2; 3; 4; 3) 225.Fm3̄m – H3 : (2; 3; 5; 3) pr. v. / (2; 3; 4; 4) 2A0 id. v. /
(2; 3; 6; 3) A3 and 2A0 id. v. ¤

D2.2—Γ2.2(2u; 2v ; w , x) 1 ≤ u, v ; 2 ≤ w ≤ x – Γ2.2 is max. iff w < x;
else Γ1 provides simpler presentation • m0 : 1A1A2A3, m′

0 : 2A1A2A3,
m2 : A3A0

1A1, m′
2 : A3A0

2A1, m3 : A0
1A1A2

2A1 – m2
0, m′

0
2, m2

2, m′
2
2, m2

3;
(m0m

′
0)

u, (m0m2)2, (m′
0m

′
2)

2 (m0m3)2, (m′
0m3)2, (m2m

′
2)

v , (m2m3)w ,
(m′

2m3)x • Γ3(A3) = (+, 0; [ ]; {(u, 2, v , 2)}) ⇒ u = v = 2 – (u; v)–
E2 : (2; 2) – H2 : else ◦ Γ0(A0) = (+, 0; [ ]; {(v , w , x)}) – (v ; w ; x)–
S2 : (2; 2; x); (2; 3; 4), (2; 3; 5) – E2 : (2; 3; 6) – H2 : else • (u; v ; w ; x)–
H2×R : (2; 2; 2; x) 3 ≤ x, A3 id. v. – H3 : (2; 2; 3; 4), (2; 2; 3; 5) A3 id. v.
/ (2; 2; 3; 6) A3 and A0 id. v. ¤

D2.3—Γ2.3(u+; 2v ; w = x) 1 ≤ v ; 2 ≤ u, w – Γ2.3 is not maximal,
Γ1(u; 2v ; w) is supergroup • r : A2A3A0 → A2A3A

′
0, m2 : A3A0A

′
0,
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m3 : A0A
′
0A2 – ru, m2

2, m2
3; (m2rm2r

−1)v , m3rm3r
−1, (m2m3)w •

(u; v ; w)– S3 – E3 : (1; 2; 4), (1; 3; 3) (A0, A
′
0) id. v. – H3 ¤

D2.4—Γ2.4 is dual to D2.2—Γ2.2 ¤

D2.5—Γ2.5(2u; 2v ; 2w) 1 ≤ u, v ,w – Γ2.5 is not max., Γ1(2u; 2v ; 2w)
is supergroup • m1 : A2A3A0, m′

1 : A2A3A
′
0, r : A3A0A1 → A3A

′
0A1,

m3 : A0A
′
0A2 – m2

1, m′
1
2, r2, m2

3; (m1m
′
1)

u, (m1rm
′
1r)

v , (m1m3)2,
(m′

1m3)2 (m3rm3r)w • (u; v ; w)– S3 – E3 : (1; 2; 2) (A0A
′
0) id. v.

– H3 ¤

D2.6—Γ2.6(2u; v+; 2w) 1 ≤ u,w ; 2 ≤ v – Sd: u ≤ w – Γ2.6 is
not max., Γ1(2u; v ; 2w) is supergroup • m0 : A1A2A3, m′

0 : A′1A2A3,
r : A3A0A1 → A3A0A

′
1, m3 : A0A1A2A

′
1 – m2

0, m′
0
2, rv , m2

3; (m0m
′
0)

u,
m0rm

′
0r
−1, (m0m3)2, (m′

0m3)2, (m3rm3r
−1)w • (u; v ; w)– S3 – E3 :

(2; 3; 2) 200.Pm3̄ / (1; 3; 3), (1; 4; 2) (A0, A
′
0) id. v. – H3 ¤

D2.7—Γ2.7(u+; v+; 2w) 1 ≤ w ; 2 ≤ u, v – Γ2.7 is not max., Γ1(u; v ; 2w)
is supergroup • r1 : A2A3A0 → A2A3A

′
0, r2 : A3A0A1 → A3A

′
0A1,

m3 : A0A
′
0A2 – ru

1 , r2
2, m2

3; (r1r2)v , m3r1m3r
−1
1 , (m3r2m3r2)w •

(u; v ; w)– S3 – E3 : (4; 3; 2) 226.Fm3̄c / (2; 3; 3), (2; 4; 2) (A0, A
′
0) id. v.

– H3 ¤

D2.8—Γ2.8 is dual to D2.1—Γ2.1 ¤

D2.9—Γ2.9(2u; v , w ; 2x) 1 ≤ u, x; 2 ≤ v ≤ w – Sd: u ≤ x – Γ2.9

is max. iff v < w , else Γ1(2u; v = w ; 2x) is supergroup – Γ2.9 is
not opt. if u = 1, then v = w and Γ1(2; v ; 2x) is supergroup •
m1 : A2A3A0, m′

1 : A2A3A
′
0, m2 : A3A0A

′
0, r : A0A1A2 → A′0A1A2 –

m2
1, m′

1
2, m2

2, r2; (m1m
′
1)

u, (m1m2)v , (m′
1m2)w m1rm

′
1r, (m2rm2r)x

• Γ3(A3) = (+, 0; [ ]; {(u, v , w)}) ⇒ 2 ≤ u – (u, v , w)– S2 : (2, 2, w),
(2, 3, 3), (2, 3, 4), (2, 3, 5) – E2 : (2, 3, 6), (2, 4, 4) – H2 : else ◦
Γ0(A0, A

′
0) = (+, 0; [ ]; {(v , w , x)}) ⇒ 2 ≤ x – (v , w , x)– S2 : (2, 2, x),

(2, 3, 3), (2, 3, 4), (2, 3, 5) – E2 : (2, 3, 6), (2, 4, 4) – H2 : else •
(u; v ; w ; x)– S3 : (2; 2;w ; 2) 3 ≤ w , (2; 2; 3; 3), (2; 2; 3; 4) – E3 : (2; 2; 4; 3)
229.Im3̄m, (3; 2; 3; 3) 227.Fd3̄m – H3 : (2; 2; 3; 5),(2; 2; 5; 3),(2; 3; 4; 2),
(2; 3; 5; 2), (3; 2; 3; 4), (3; 2; 3; 5), (3; 2; 4; 3), (3; 2; 5; 3), (4; 2; 3; 4), (4; 2; 3; 5),
(5; 2; 3; 5) pr. v. / (2; 2; 3; 6), (2; 2; 4; 4), (2; 2; 6; 3), (3; 2; 3; 6), (3; 2; 4; 4),
(4; 2; 3; 6), (5; 2; 3; 6) (A0, A

′
0) id. v. / (2; 3; 6; 2), (3; 2; 6; 3), (4; 2; 4; 4),

(6; 2; 3; 6) A3, (A0, A
′
0) id. v. / else out. v. ¤
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D2.10—Γ2.10 is dual to D2.5—Γ2.5 ¤

D2.11—Γ2.11 is dual to D2.3—Γ2.3 ¤

D2.12—Γ2.12(u+; 2v ; 2w) 1 ≤ v , w ; 2 ≤ u – Γ2.12 is not max.,
Γ1(u, 2v , 2w) is supergroup • r1 : A2A3A0 → A2A3A

′
0, m2 : A3A0A

′
0,

r3 : A0A1A2 → A′0A1A2 – ru
1 , m2

2, r2
3; (m2r1m2r

−1
1 )v , (r1r3)2,

(m2r3m2r3)w • (u; v ; w)– S3 – E3 : (2; 2; 2) (A0, A
′
0) id. v. – H3 ¤

D2.13—Γ2.13 is dual to D2.12—Γ2.12 ¤

D2.14—Γ2.14 is dual to D2.7—Γ2.7 ¤

D2.15—Γ2.15(u+; v+; w+) 2 ≤ u, v ,w – Sd: u ≤ w – Γ2.15 is not max.,
Γ1(u; v ; w) is supergroup • r1 : A2A3A0 → A2A3A

′
0, r2 : A3A0A1 →

A3A
′
0A1, r3 : A0A1A2 → A′0A1A2 – ru

1 , r2
2, r2

3; (r1r2)v , (r1r3)2, (r2r3)w

• (u; v ; w)– S3 – E3 : (4; 3; 4) 207.P432 / (2; 3; 6), (2; 4; 4) (2; 6; 3) A0

id. v. – H3 ¤

D3.1—Γ3.1(3p; q, 2r; s = t; u) 1 ≤ p, 1 ≤ r, 2 ≤ q, s,u – Γ3.1 is max.
iff q 6= 2r or s 6= u, else Γ1(3p; q = 2r; s = u) is supergroup – Γ3.1 is
not optimal if q = 2, then Γ2.2(ū = p, v̄ = r, w̄ = s, x̄ = u) provides
simpler presentation – Γ3.1 is not opt. if p = 1, then Γ1(ū = u, v̄ =
r, w̄ = s, x̄ = q) is simpler – Γ3.1 is not opt. if r = 1, then Γ1(x̄ =
p, ȳ = q, z̄ = s = t = u) is simpler • m0 : 2A1A2A3, m1 : A2A3

1A0,
m2 : A3

1A0
2A0, m′

2 : A3
2A0

2A1, m3 : 1A0
2A0

2A1A2 – m2
0, m2

1, m2
2, m′

2
2, m2

3;
(m0m1)p, (m0m

′
2)

2, (m0m3)2 (m1m2)q, (m1m3)2, (m2m3)s, (m′
2m3)u

• Γ3(A3) = (+, 0; [ ]; {(p, q, r, 2)}) ◦ 1Γ0(1A0) = (+, 0; [ ]; {(q, 2, s)})
◦ 2Γ0(2A0) = (+, 0; [ ]; {(r, t, u)}) ◦ 1Γ1(1A1) = (+, 0; [ ]; {(s, t)})
⇒ s = t • opt. ⇒ A3 out. v. ¤

D3.2—Γ3.2(2p, q; 3r; s, 2t) 1 ≤ r; 1 ≤ p, t; 2 ≤ q, s – Sd: p < t
or p = t, q ≤ s can be assumed – Γ3.2 is max. if 2p 6= q or s 6= 2t,
else Γ1(2p = q, 3r; s = 2t) is supergroup – Γ3.2 is not opt. if p = 1,
s = 2, then Γ2.2(ū = t; v̄ = r; w̄ = 2, x̄ = q) provides simpler pre-
sentation – dually t = 1, q = 2 leads to Γ2.2 as simpler presentation –
Γ3.2 is not opt. if r = 1 = p, then Γ1(x̄ = q, ȳ = s, z̄ = t) provides
simpler presentation – dually r = 1 = t leads to Γ1 as simpler presentation
– Γ3.2 is not opt. if p = 1 = t, then Γ1(x̄ = q; ȳ = r; z̄ = s) leads to
simpler presentation • m0 : 1A1

1A2A3, m′
0 : 2A1

2A2A3
1A2, m1 : 2A2A3A0,
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m2 : A3A0
1A1, m3 : A0

1A1
1A2

2A1, m′
3 : A0

2A1
2A2 – m2

0, m′
0
2, m2

1, m2
2, m2

3,
m′

3
2; (m0m

′
0)

p, (m′
0m1)q, (m0m2)2, (m0m3)2, (m′

0m3)2, (m′
0m

′
3)

2,
(m1m2)r , (m1m

′
3)

2, (m2m3)s, (m3m
′
3)

t •
Γ3(A3) = (+, 0; [ ]; {(r, 2, p, q)}) – (r,p, q)– S2 : (1, 1, 2),(1, 2, q),(1, 3, 3),
(1, 3, 4), (1, 3, 5) – E2 : (1, 3, 6), (1, 4, 4), (2, 2, 2) – H2 : else ◦ Γ0(A0) =
(+, 0; [ ]; {(r, 2, t, s)}) – (r, t, s)– S2 : (1, 1, 2), (1, 2, s), (1, 3, 3), (1, 3, 4),
(1, 3, 5) – E2 : (1, 3, 6), (1, 4, 4), (2, 2, 2) – H2 : else • (p; q; r; s; t)–
S3 : not opt., e.g.: (1; 3; 1; 3; 3) or (1; 3; 3; 3; 1) – E3 : not opt., e.g.:
(1; 4; 3; 4; 1) and (1; 4; 1; 3; 4) lead to 221.Pm3̄m, (2; 4; 1; 4; 2) leads to
123.P4/mmm – E3 opt.: (2; 3; 1; 6; 2) 191.P6/mmm – S2×R opt.:
(2; 2; 1; s; 2) 2 ≤ s, (2; 3; 1; 3; 2), (2; 3; 1; 4; 2), (2; 3; 1; 5; 2) – H2×R opt.:
(2; q; 1; s; 2) 1

q + 1
s < 1

2 – S2-splittings:r = 1 < p, 3 ≤ t; 1
q + 1

s > 1
2

– e.g.: (3; 3; 1; 3; 3) → S3 : Γ1(3; 3; 3) + S3 : Γ1(3; 3; 3); (3; 4; 1; 3; 4) →
S3 : Γ1(3; 4; 3) + E3 : Γ1(4; 3; 4); (3; 4; 1; 3; 5) → S3 : Γ1(3; 4; 3) + H3 :
Γ1(4; 3; 5); (4; 3; 1; 4; 4) → E3 : Γ1(4; 3; 4) + H3 : Γ1(3; 4; 4); (3; 5; 1; 3; 5)
→ H3 : Γ1(3; 5; 3) + H3 : Γ1(5; 3; 5); – E2-splittings: r = 1 < p, 3 ≤ t,
1
q + 1

s = 1
2 – e.g.: (2; 3; 1; 6; 3) → E3 : Γ1(2; 3; 6) + H3 : Γ1(3; 6; 3);

(3; 3; 1; 6; 3) → H3 : Γ1(3; 3; 6) + H3 : Γ1(3; 6; 3); – H3 : not opt., e.g.:
(1; 5; 1; 3; 5) and (1; 5; 3; 5; 1) lead to Γ1(5; 3; 5) – H3 opt.: r = 1; 3 ≤ t,
1
q + 1

s < 1
2 – e.g.: (2; 4; 1; 5; 3) – E2-splitting: (2; 2; 2; 2; 2) → H2×R +

H2×R ¤

D3.3—Γ3.3(3p; 3q; r, 2s) 1 ≤ p, q; 1 ≤ s; 2 ≤ r – Γ3.3 is max. iff r 6= 2s,
else Γ1(3p; 3q; r = 2s) is supergroup – Γ3.3 is not opt. if p = 1 = q,
then Γ2.9(ū = 2; v̄ = 2; w̄ = r; x̄ = s) provides simpler presenta-
tion • m0 : 1A1A2A3, m1 : A2A3A

′
0, m2 : A3A0

1A1, m3 : A0
1A1A2A

′
0,

r : A3A0
2A1 → A3A

′
0
2A1 – m2

0, m2
1, m2

2, m2
3, r2; (m0m1)p, (m0m2)2,

(m0m3)3, (m1rm2r)q, (m1m3)2, (m2m3)2, (m3rm3r)s • Γ3(A3) =
(+, 0; [2]; {(p, 2, q)}) – (p, q)– S2 : (1, 1) is not opt. – E2 : (1, 2) – H2 :
else ◦ Γ0(A0, A

′
0) = (+, 0; [ ]; {(q, 2, s, r)}) – (q, s, r)– S2 : (1, 1, 2) is not

opt., (1, 2, r), (1, 3, 3), (1, 3, 4), (1, 3, 5) – E2 : (1, 3, 6), (1, 4, 4), (2, 2, 2) –
H2 : else • (p; q; r; s)– S3 : not opt., e.g.: (1; 1; r; 2), (1; 1; 3; 3), (1; 1; 3; 4)
– E3 : not opt., (1; 1; 4; 3) 229.Im3̄m / (1; 2; 2; 1) A3 id. v. – H2×R
opt.: (1; 2; r; 1) 3 ≤ r, A3 id. v. / (2; 1; 2; s) 2 ≤ s, A3 id. v. – H3 not
opt. – H3 opt.: (2; 1; r; 2) 3 ≤ r (r = 4 is not max.), (2; 1; 3; 3), (2; 1; 3; 4),
(2; 1; 3; 5), (2; 1; 4; 3), (2; 1; 5; 3) A3 id. v. / (1; 2; 2; 2); (2; 1; 3; 6), (2; 1; 4; 4)
A3 and (A0, A

′
0) are id. v. ¤

D3.4—Γ3.4 is dual to D3.1—Γ3.1 ¤

D3.5—Γ3.5 is dual to D3.3—Γ3.3 ¤
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