Remarks on a paper of C. J. Mozzochi

By SANDOR GACSALYI (Debrecen)
To Professor Andrds Rapcsak on his 60th birthday

In what follows we are going to make some remarks concerning C. J. M0zzOCHI's
paper [2]. We shall freely use the terminology and notations of that paper, as well as
those of the monograph [1].

1

After having defined symmetric generalized proximity spaces (X, 0), M0zzoCHI
proceeds to show that a topology for X can be obtained from 4 in a natural way,
by considering a point x as belonging to the closure of a set A iff xdA4. (See [2],
Theorem (1.9).)

By definition a symmetric generalized proximity on X is a relation on P(X)
satisfying the five conditions (P.1)—(P.5). This set of conditions is more than what
is needed if we are concerned only with deriving from J a topology for X. As a matter
of fact, if we retain only conditions (P.2) and (P.3), we still are able to obtain a result
similar to Mozzochi’s Theorem (1.9):

Let 6 be a relation on P(X) satisfying
(P.2) Co(A'UB) if and only if C54V COB;
(P.3) 430 for any ACX.

Put
AcF if and only if xd4 implies x€A.

We are now able to prove the following

Proposition 1. The class & is the class of closed sets of a topology on X.
In this topology
A; = {x|x4A} S A forany AC X.

PROOF. 0€F since xd0 cannot occur; X€F since always x€X.
A,BeF implies AUBeF:

Indeed, if x4 B, then xdA4 and/or x6B by (P.2). If, say, x6A4, then x¢ A hence
x€AUB.
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For any I'#0, A,¢F (y€l') implies N{4, yelr}eF:

Indeed, again by (P.2), x6N {4,|y€erl} implies x64,U N{A4,|yer}, i.e. x04,
for any (fixed) y€I'. Hence x€A, (y€I') and so

X€ m[A-,»h’Er}-

We still have to show that 4, 4, where

Ay = {x|x64) and A =N{F|4 S FeF}.

If AS Fe#, then xdA=xdF=x€ F, and this being true for any closed superset
of A, x4 implies xc A. |}

Remark. By weakening a set of conditions, we usually diminish its ability to
rule out trivial or degenerate cases. The situation arising if we retain from among
(P.1)—(P.5) only the two conditions (P.2) and (P.3), is no exception to this rule.
Consider e.g. the following “‘distantness’ (rather than “proximity’’) function:

For subsets of an unbounded metric space, put

A=0 andfor B=0 implies AJB,
and in case 40, B=0, let
AdB iff sup{e(x,y)|xcA,yeB} = 1.

The relation & so defined is neither a proximity nor a symmetric generalized
proximity (no point is near to itself !), but it satisfies (P.2) and (P.3).

There is a slight difference between our Proposition 1. and Theorem (1.9) in
[2], insofar as we have introduced a topology by exhibiting the class of closed sets,
whereas (1.9) proceeds via the Kuratowski closure operator. If, in Proposition 1.
we had 4;=A4 for any 4 < X, this would show the two definitions to be equivalent
not only under the conditions of Theorem (1.9) (which is clear!) but also in the
more general situation considered in Proposition 1. However, we have been able
to prove only A4;S A, and so we are led to ask, what conditions (if any) must be
imposed on é besides those underlying Proposition 1, in order to make valid 4;=A4
for any subset A4 of X. The answer to this question is given by the following

Proposition 2. Under the hypotheses of the foregoing proposition, the con-
dition A ‘
As=A forany AS X
will hold if and only if § satisfies the following conditions:
(P.4) xdx for any xcX.
(P.5a) If adB and bdC for all b€ B, then adC.

PROOF. Suppose A;=A true for any A S X. Then xeX implies xdx, i.e. (P.4)
holds.
In order to establish (P.5a) i.e. the implication

adB & b3C (b€ B) = adC,



Remarks on a paper of C. J. Mozzochi 297

we first remark that by a¢B iff adB this condition can be written

acB&beC(beB) = acC,
or equivalently
acB&B < C=acC,

and this is clearly true because BS C implies BS C.
So far we have established the necessity of conditions (P.4) and (P.5a). Let us
now prove their sufficiency:
By (P.5a) xdA4; and ydA (y€A;) together imply xdA4, and this in turn yields
x¢€ Az. The implication
x5A,, = XE€ Aa

just established proves A4; to be closed. We infer from (P.4) that 4 S A4;, and
AS A,S A now yields 4,=A4. |}

It is not hard to see that each of the four conditions underlying Proposition 2.
can be derived from the conditions which serve to define LE-proximities. (See [3],
(19.1) Definition.) Indeed, we have the implications

(i) = (R2); (i) = (P3);
(iv) = (P.4); (iii) = (P.5a).
Thus the statement of our Proposition 2. will in particular be valid if é isan LE-
proximity. Seen the fact that LopbaTo’s LO-proximities differ from LeAper’s LE-

proximities only by the imposition of an additional (commutativity) condition,
the statement of Proposition 2. is, of course, valid for LO-proximities too.

11

Without explicitely saying so, Theorem (1.18) of [2] describes the notion of sym-
metric generalized proximity space within the frame of CSAszAR’s syntopogeneous
theory. As a matter of fact, this theorem essentially says that a symmetric generalized
proximity space can be regarded as a symmetric topogeneous order satisfying the
additional condition')

(Q.6) A= B implies that, for all C, 4=C or there exists x¢ X—C with x<=B,

providing thereby a counterpart, for symmetric generalized proximity spaces, of
(7.26) in [1].

In section 11. of [2], for a non-void subset # of P(X X X) the following axioms are
considered:

(M.1) For every Uc#, UZ=2A4.
(M.2) N{U|Ue#}=A.
(M.3) For every Uc#, U=U"\.

1) A<B iff AS(X—B). In [2], A= B is written instead of A< B.
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(M.4) For every A¢P(X) and U, V in % there is a W¢ such that W[A4]CS
S U[A]INV[A]

(M.5) For every U, V in %, UNVEU.

(M.6) For every A, B in P(X) and Uc#, if V[A](NB=0 for all VE%, then
there exists x¢ B and there exists a We# such that W[x]< U[A].

(M.7) For every Uc% there exists a V<% such that Vo VE%.

(M.8) If Uc% and VEXXX and USV and V=V"1, then VE¥«;
and the following definitions are adopted:

W is a symmetric generalized uniformity if it satisfies conditions (M.1, 3, 4, 6, 8);
W« is a correct uniformity if it satisfies conditions (M.1, 3, 4, 7, 8);
# is a symmetric uniformity if it satisfies conditions (M.1, 3, 5, 7, 8).

It is our aim to give syntopogeneous descriptions of these three notions, provid-
ing thereby counterparts to (7.31)—(7.33) in [1].

Let us begin with symmetric uniformities: their definition is closely akin to,
but more restrictive than CsAszAr’s definition of a uniform structure?®). A comparison
of the two definitions yields the following table of correspondence?):

(Up = (M.1)
(Uy) = (M.5)
(Uy) = (M.7)
(Uy) = (M.3)

(M.8)

Accordingly, CsAszAR's result (7.31)—(7.33) remains valid for M0zzocHI's sym-
metric uniformities, and in order to obtain a syntopogeneous characterization of
symmetric uniformities, it will be sufficient to account for the surplus conditions in
their definition.

Now CsAszAr’s result just mentioned can be formulated as follows®):

Theorem. ([1], Chapter 7.) Uniformities and symmetric syntopologies on a given
set X =0 can be identified in the following sense:

(1) If U is a uniformity on X, then putting

A<yB i XEA} B
<vB (x,»)eU - ys

%) See [1], pp. 65—67, and in particular the footnote on p. 67.

) (Up): U’, U'eU=>(3Uc)US U’ NU".

1) Whenever in the sequel we are going to speak about Csaszar's Theorem or simply about
the Theorem, it will be this result that we shall mean.
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for each U we obtain a symmetric syntopology
Sy = {<v|UE¥} on X.
(2) If & is a symmetric syntopology on X, then putting
(x,)EU. iff x<« X—y
for each <= €%, we obtain a uniformity

(3) The mappings
'?/ — .9’* (md 9’ o '“W..f

are one-to-one correspondences, inverse to each other, between the sets of all uniformities
and all symmetric syntopologies on X. |}

Remark. As is known (see [1], (5.39)—(5.43)), the formulae in parts (1) and
(2) of this theorem establish a natural one-to-one correspondence between biper-
fect topogeneous orders <= on X and reflexive subsets of XX X, and in particular
between symmetric perfect topogeneous orders on X and reflexive, symmetric
subsets of XX X. This one-to-one correspondence will be relied upon in the proof
of the following propositions. [Jj

The desired syntopogenous characterization of symmetric uniformities is now

given by the following

Proposition 3. A uniformity is a symmetric uniformity in Mozzochi's sense,
iff the corresponding symmetric syntopology satisfies the following condition®):

-fES’
(D) o

{1 -

}:.» =, €5

ProoF. (i) The condition is necessary:
Suppose % is a symmetric uniformity, %, =% the corresponding symmetric
syntopology, < €.%, an <, a symmetric perfect topogeneous order satisfying <, < <.

Then by
x€X—y=a2x4X—y

we have U.EU.,. Now by (M.8) U, €%, and so =(U.)==,€%. This estab-
lishes (D).

(i1) The condition is sufficient:

Let . be a symmetric syntopology satisfying (D). We need only to show that

Uy = {U<|< €%}
satisfies (M.5) and (M.8).

) In formulating the descending condition (D), we suppose all occurring relations ,..<=" to
be symmetric perfect topogenous orders. Thus (D) simply says that if a symmetric perfect topogeno-
us order belongs to .%. then any smaller symmetric perfect topogenous order also belongs to .%.
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First of all we remark that on the basis of (D) and of condition (S,) in the defini-
tion of a syntopogeneous structure, we have the implication

(SP) <, S ESF = (= J “-’-'1)“p)6'90

where (= U =,)*? denotes the smallest symmetric perfect topogeneous order con-
taining = | =, . (The existence of such a one is assured, because < is both symmetric
and perfect, and symmetry as well as perfectness are preserved when forming arbitrary
intersections.)

As to (M.S), if U, VedUy, ie. U=U.,, V=U,, (=,, =€), then by (SP)
==(= 1 U ":2)‘3;,}6'9‘?, and UNV= U< 6&7 .

Here the validity of UNV=U. follows from the fact that the correspondence
= - /. is order-inverting, and so the smallest symmetric perfect topogeneous order
< containing both <=, and =, yields the largest reflexive and symmetric relation
U=U_. contained in both U and V, i.e. UNV.

In order to establish (M.8), let Uc% 4 i.e. U=U. (=€%), and V= U, for some
symmetric subset ¥ of X' X X.

Then V=U_., where <=,= < is defined as in part (1) of CsAszAr’s theorem.
Now V2 U implies =, < <= and so by (D) =,€%, and consequently V=U_ €%, . |}

Our next aim is to give a syntopogeneous characterization of correct uni-
formities.

As we have seen, correct uniformities can be obtained by replacing in the
definition of symmetric uniformities condition (M.5) by the weaker condition (M.4):

For U, Ve and for AC X given, there is

W =W(U,V,A) e« sothat WI[A] € U[A]NV[A]
Let now U be a correct uniformity, and let us consider the set
Su = {<v|Uc)}.

Conditions (M.1) and (M.3) being valid for %, the elements of %, are symmetric
perfect topogeneous orders. Also, condition (S,) in the definition of a syntopogenous
structure®) remains valid for &, because it is implied by (and, in fact, equivalent to)
(M.7) valid for %. Moreover, on the basis of condition (M.8), the descending con-
dition (D) is also true for #.

In proving Proposition 3 we found that the symmetric syntopology corresponding
to a symmetric uniformity satisfies (SP), a condition stronger than (S;). It will be
of some interest to note that this condition (SP) is the exact equivalent, the “syn-
topogeneous translation™ as it were, of condition (M.5). More formally, this equi-
valence is expressed by the following

Lemma 1. If U =%y and & =y correspond to each other in the sense of the
Theorem, where U is supposed to satisfy only conditions (M.1, 3,7, 8), then U will
satisfy condition (M.S), if and only if & satisfies condition (SP).

Proor. We have shown in proving Proposition 3. that (SP) valid for . implies
the validity of (M.5) for % =% 4 .

%) See [1], (7.1).
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Conversely, suppose that % satisfies condition (M.5).

Now let two symmetric perfect topogenous orders belonging to &, =,= <,
and =,==y, (U;, U,€%) be given. By (M.5) U,, Uyc%=U,NU,€%, and so
<==<pynv,€Z.

Now = so defined is a symmetric perfect topogenous order, and in view of
S =y WV EU

it is even the smallest such order containing both <, and <,. This proves (SP). |}

We must now find out what will be the weaker condition replacing (SP) (and
possibly even (S,)), if instead of (M.5) we have only (M.4) to rely upon. The answer
to this question is given by the following

Lemma 2. If U=Uy and & =y correspond to each other in the sense of the
Theorem, where U is supposed to satisfy only conditions (M.1, 3,7, 8), then ¥ will
satisfy condition (M.4) if and only if & satisfies the following condition

(S,,) For =, <, and for ASX given, there is <% so that?)

A‘CIB

A{?.C}::A-:BHC.

PrOOF. Let condition (S,,) be valid for &. Also, let U, Ve#U =94 and A X.
Consider =y€% and =,€%. One sees that the definition of = by which

d =B Y bk B
=y 1 (x,y)eU =>y€ )

A<yB iff U4 <SB.

can be rewritten so:

Thus we have’
A <pU[A] and A <, V[A],

and by (S,,) there exists = €.% so that
A = U[A]NV[A].
Now = = =, for some W e, and so
W[A] S U[4]NV[A].

Suppose now that % satisfies (M.4). Let U, V €%, end hence <, <, € ¥ =9,.
Let now be
A <p B and A4 =<y C,
or equivalently _
U[A] € B and V[4] S C.
We infer that
U[A]INV[A] S BNC.

7) Of course, this relation < will depend not only on <, and =,, but also on the set 4.
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Now, by (M.4), for some We# one has
WA S U[A]"\V[A] S BNC,

A=BNC Jor- === N

Now we are able to formulate the following
Proposition 4.

(1) If % is a correct uniformity on a set X, then
Fu = {=<v|Uc¥)

is a set of symmetric perfect topogeneous orders, satisfving conditions (S;,), (S.)
and (D).

(2) If & is a set of symmetric perfect topogeneous orders, satisfying conditions
(S,.), (Sy) and (D), then

¥, = (U] < €F}

is a correct uniformity.

(3) The mappings

U—~SFy and &L — U,

are one-to-one correspondences, inverse to each other, between the sets of all correct
uniformities and all systems of symmetric perfect topogeneous orders satisfving con-
ditions (S,,), (Sy) and (D) on X.

ProOOF. (1) Our previous considerations contain a full proof of this first part.

(2) The proof of part (1) can be reversed so as to yield a proof of this second
statement. In particular, condition (S,,) being but a “translation” of (M.4), we can
retranslate (S,,) thereby getting back (M.4).

(3) A straightforward consequence of the formulae by which the transition from
U to ¥4 and from & to % is being realized®). |

Finally, let us try and find a syntopogenous characterization for symmetric
generalized uniformities. We arrive at this notion by replacing condition (M.7) in
the definition of correct uniformities by (M.6):

For every A, BE X and Uc#, if V[A]NB=0 for all V%, then there exists
x€B and there exists a We# such®) that W[x]S U[A]. |}

It is not hard to find the syntopogenous counterpart of this condition:

(S3,) For every A, BE X and Uc#, if A< H implies B[\ H =0 for all Ve,
then there exists x< B and there exists We4 such that

A<y H implies x <, H. |}
In formulating this condition, we have used the representation ¥ =%, of ¥.

A formulation referring to % only and leaving without mention the corresponding

#) The transition formulae being the same as in the Theorem, the proof too will be the same
as that of part (3) there.
) Of course, x=x(A, U, B) and W=WI(A, B, U, X).
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 is also easy to obtain. With a self-explanatory change in notations, we indeed
arrive at the following equivalent formulation:

(S;,) For every A, BEX and <€, if A<"H implies B(\H =0 for all <"¢%,
then there exists x€ B and there exists <=,€.% such that

A<=H implies x <, H. §§

We have denoted this condition by (S,,) because it is weaker than (S;). The
proof of this can be obtained by giving a “syntopogenous translation” of the
reasoning by which Mozzochi proved that (M.7) implies (M.6). (See [2], Remark
(2.1).

lzlow we see that in order to obtain a syntopogenous characterization of sym-
metric generalized uniformities, we have only to replace in Proposition 4. as well
as in the proof of that proposition, condition (S,) corresponding to (M.7) by con-
dition (Ss,), the counterpart of (M.6), obtaining thereby the following

Proposition 5. The syntopogenous counterparts of symmetric generalized uni-
Sormities U are sets & of symmetric perfect topogenous orders satisfying conditions
(S1a), (Sg.) and (D). The correspondences U —~% 4 and & —~U o are defined in the same
manner as in the foregoing proposition. |§
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