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Necessary and sufficient — or sufficient — conditions (C) of that a function
be a characteristic function are well known ([1], Ch. 4). Now let (U) be some con-
dition of that a function constructed by some characteristic function be the char-
acteristic function of a unimodal distribution function. Then combining (U) with
(C) one obtains a condition of that a function be the characteristic function of a uni-
modal distribution function.

The classical type of a condition (U) is presented by A. JA. HINCIN’s well-known
unimodality theorem ([2], p. 160; [3]; [4] p. 155, 501) which states that a function
@(r) is the characteristic function of a (0) unimodal distribution function F(x) if

and only if it can be represented in the form (I>(a*)=ir f z(u)du where y(u) is some
0

characteristic function®). If @(r) is differentiable, this is equivalent to that @(r)
is the characteristic function of a (0) unimodal distribution function if and only if

% [t (1)]=y(1) is a characteristic function.

Combining Hin¢in’s condition with G. POLYA’s sufficient condition ([1], p. 74)
of that a real, continuous, even function @(r) be a characteristic function, R. G. LAHA
obtained sufficient conditions of that a real, even function be the characteristic
function of a symmetric and unimodal distribution function ([5]; [6], p.- 311).

Now it is clear that any other condition of type (C), combined with Hin¢in’s
condition will yield a new condition of unimodality. For instance let (C) be the con-
dition given by the

Theorem of M. Mathias. Ler (1) be a real, bounded, continuous, even func-

+ oo

tion such that f \@D(1) dt ==, Let us introduce, for n=0,1, ... and p=0 the func-
rions — o

Co(p)=(=1)" [ ®(pr)e " He,, (1)dt

*) (0) unimodal means: unimodal with mode at x=0.
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(He,(t)=(—1)"e"" rd (") is the v th Hermite polynomial.) Then the necessary

and sufficient conditions of that ®(t) be the characteristic function of a symmetric
density function are 1) ®(0)=1; 2) C,,(p)=0 ([7]; [1] p. 68).
Now let us take Hincin’s condition in that form which claims % [t®(1)] being

some characteristic function. Combining these two conditions we easily obtain, as
a counterpart of M. Mathias’ theorem,

Theorem 1. Let ¢(t) be a real, bounded, continuous, even function such that
f lp (1) dt=oo, (1) exists and is continuous and f lte’ (1) dt=-o=. Let us in-

troduce, for n=0, 1, ... and p=0 the functions

My, 1(p) = (1) f ¢(Pf)fe_'="2Hezu+1(f)dl.

Then the necessary and sufficient conditions of that ¢(t) be the characteristic function
of a symmetric, (0) unimodal density function are 1) @(0)=1; 2) M,,.,(p)=0.
Proor. The function % [t (£))=y(t) satisfies the conditions in M. Mathias’

theorem, taking into account that to the functions C,,(p), the functions

1y [ 2(pre " Hey () dt = (=17 [ pt @(pr)e""* Hesy (1) di

— o0 ]

correspond and p=0.
2

A new type of condition (U) can be obtained by the following idea.
Supposing that, in Hin¢in’s theorem, the density function f(x) of F(x) is dif-
ferentiable and that the relevant conditions are fulfilled, one gets that the fact that

r [t#(1)] is a characteristic function is equivalent to that

: i 8 )
—%f (x)=ﬁ_£ @ Wle= dt

is @ density function. This observation suggests establishing the following

Theorem 2. Let s(x) be some real function such that s(—x)=s(x), s(x)<0 for

x=0, f |s(x)|dx=-<o. A function @(t) satisfving the conditions
) ¢0)=1;

2) [ ltp()di < =;
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LR ; -
N = _{ @(e ™ dt = f(x), then f f(x)] dx < ==;

]

is the characteristic function of a (0) unimodal density function being differentiable
except possibly at x=0, if and only if, at the notations

oo

(1) [ s(x)e"dx = a(1),
z(1) = -—;—n f o(t—u)u @(u)du,

7(1)
7(0)

is the characteristic function of some density function.

ProoF. By virtue of the conditions,

__2'? f o(t—wu @) du = (1) = j‘ SO ()€ dx
s(x)f"(x)
x((i)))
= X0
= 7(0)

is a density function, and f’(x)=0 for x=0, f"(x)=0 for x=0,

and, if f(x) is a (0) unimodal density function, then

e o T
.. X(O)

tion, then

is a density function,

is a characteristic function. Conversely, is a characteristic func-

s(x)f"(x)
7(0)

further, by @(0)=1, ff(x)dxr-l; that is f(x) is a (0) unimodal density function

with characteristic function ¢(r).

Remark 1. Hin¢in’s condition can be obtained from (1) by taking s(x)=
—x2/2e2

=—X—
V 2ne
tegration and, finally, calculating the limit when &-0.

(e=0) i.e. writing o(u) =—ic*ue *** in (1), performing partial in-

Remark 2. In the foregoing we can take also f(x+h)—f(x), (h=0, x=0) in-
stead of f"(x) in s(x)f"(x). Then the existence of % f e(e ™dt = f(x) will

clearly suffice. The corresponding Fourier transforms and calculations in concrete
cases will become, however, more complicated. Therefore we avoid the relevant
investigations.

Now we give an example to illustrate the power of Theorem 2, namely, we take
as condition of type (U) the condition of unimodality expressed by this theorem and
combine it with some condition of type (C). Evidently the crucial point of any applica-
tion is the choice of s(x) and a(r), respectively.

Example. Let (C) be the condition in M. Mathias’ theorem of that a real,
bounded, continuous, even function be a characteristic function. Combining it
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with the condition in Theorem 2, we obtain as the necessary and sufficient condition
of that a real, bounded, continuous, even function ¢(#) satisfying the integrability
conditions in Theorem 2 be the characteristic function of a (0) unimodal density
function, that

(2 -1y f %‘%}e"”“!{e&(r}d; ~

- G Fue] fotr— e ewa) o= o

for n=0,1, ... and any p=0.
To show the effect of the choice of s(x), let us take here now
-x2/2
s(x) = —xe,T ie. o(f) = —ite "2,
¥ 2n
Then

f o(pt—u)e """ He,, () dt =

u

I |
- VB S ]

P+ 1yt! Vpr+1

and for 2) we (obtain
Y2z p
2(0)(p*+ 1)

f @(Pu)ue " He,,, (1)du

for n=0, 1, ... and p=0, P>1 (P= Vp?+1), a condition very similar to that occur-
ring in Theorem 1; let us notice that in @(Pu) P=1 already suffices.

Remark. The combination of the condition of unimodality expressed by Theo-
rem 2 with G. Pdlya’s condition can be constructed automatically and is, therefore,
omitted.
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