On finiteness conditions for near rings
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1. Introduction

Finiteness conditions for various algebraic systems have been considered by
several authors (see [1], [2], [7], [8], [9]). A very deep problem in group theory which
remains unsolved is the following: Is a group finite, if it satisfies both the ascending
and descending chain condition for subgroups? The answer is affirmative in the
case of abelian groups. It was shown in [9] that a ring is finite if it satisfies both
chain conditions for subrings. The purpose of this paper is to investigate the
corresponding problem for near rings. While we do not have the general problem
solved, we do have satisfactory answers for certain classes of near rings.

2. Preliminaries

A near ring R is a system with two binary operations, +and - such that:
(1) (R, +) is a group, not necessarily abelian,

(ii) (R, +) is a semigroup,

(iii) x(y+2z) = xy+xz, for all x, y, Z€R,

(iv) 0x=0 for all x in R.

In particular, if R contains a multiplicative semigroup S whose elements generate
(R, +) and satisfy

(v)(x+y)s = xs+ys, for all x, yeR and s€ S, we say that R is a distributively

generated (d. g.) near ring.

The most natural example of a near ring is given by the set R of identity pre-
serving mappings of an additive group G (not necessarily abelian) into itself. If
the mappings are added by adding images and multiplication is composition of
functions, then the system (R, +, +) is a near ring. If S is a multiplicative semi-
group of endomorphisms of G and R’ is the subnear-ring generated by S, then R’
is a d.g. near ring. Other examples of d.g. near rings may be found in [6].

An element r of R is right (anti-right) distributive if (b+c)r = br+cr ((b+c)r =
= cr+br), for all b, c€ R. It follows at once that an element r is right distributive
if and only if (—r) is anti-right distributive. In particular any element of a d.g. near
ring is a finite sum of right and anti-right distributive elements.

3.
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A subgroup H of a near ring R is called an R-subgroup if HR = {hr: h€ H,
réER}SH.

The kernels of near ring homomorphisms are called ideals. Equivalently, K is
an ideal of a near ring R if and only if K is a normal subgroup of (R, +) and satisfies

(i) RKEK and

(i) (m+k)n—mne K, for all m,n€R and k€K.

For each x in a near ring R, the left annihilator A(x) of x is defined to be the
set A(x) = {reR: xr = 0}. In general, A(x) is not an ideal of R.

3. Main results

It was shown in [9] (also [1], [8]) that if a ring R has a finite number of subrings,
then R is finite. We now consider this problem for near rings and show that the result
is valid for a certain class of near rings. But first a lemma is needed. The proof is
trivial, hence omitted.

Lemma 3.1. Let R be a near ring with no nonzero nilpotent elements. Then
xa=0 implies that ax=0 and xra=0 for each r in R.

Theorem 3.2. Let R be a d.g. near ring with no nonzero nilpotent elements.
If R has finitely many subnear-rings, then R is a finite commutative ring.

Proor. We use induction on n(R), the number of proper subnear-rings of R.

(i) n(R)=0. For each a0 in R, aR is a subnear-ring of R and hence aR=R.
By Theorem 3.4 in [4], R is a division ring. Hence R is a finite commutative
ring.

(i) n(R)=k. We consider two cases.

Case 1. R has no zero divisors. Consider the chain aR=2a*R2=... . The fact
that R has a finite number of subnear-rings and no zero divisors implies that aR=R
for each a0 in R. Again R is a division ring and result follows.

Case 2. R has zero divisors. For each zero divisor x in R, the set A(x) is an ideal
by straight forward calculation. It is clear that 0= A(x)= R, and R/A(x) has no
nonzero nilpotent elements. Since a homomorphic image of a d.g. near ring is again
d.g., we see that R/A(x) satisfies the inductive hypothesis. Hence R/A(x) is commuta-
tive. Thus for each a, b€ R, (ab—ba)€ A(x). But the intersection of all A(x), where
X is a zero divisor, is zero. Hence R is a commutative (distributive) near ring. By
Corollary 3 in [5], R is a ring. Hence R is a finite commutative ring. The proof is
complete.

Before the next result we need a definition.

Definition 3.3. Let R be a d.g. near ring. The left annihilator L of R is
defined by
L={x€R:xr=0 forall réR).

It can be verified easily that L is an ideal of R.

Theorem 3.4. Let R be a d.g. near ring with the property that if x is nilpotent,
then xy=0 for all y in R. If R has a finite number of subnear-rings, then R is finite.
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Proor. If R has no nonzero nilpotent elements, then result follows from
Theorem 3.2.

Now suppose R has nonzero nilpotent elements. Hence the left annihilator
L of R is nontrivial. The near ring R/L is d.g. and has a finite number of subnear-
rings. Furthermore it has no nonzero nilpotent elements. Thus by Theorem 3.2,
R/L is finite. Observe that ab=0 for each a, b€ L. Thus every subgroup of L is a
subnear-ring and since L can have only a finite number, it follows that L is finite.
Now the fact that both L and R/L are finite implies that R is finite. The proof is
complete.

It was shown in [6] that all the d.g. near rings defined on the symmetric groups
S,, n=35, satisfy the hypotheses of Theorem 3.4.

Now we consider the case when d.g. is removed from the hypothesis. We begin
with the following result.

Proposition 3.5. Let R be a near ring with a nonzero right distributive element d.
If R has no proper subnearrings, then R is either the zero ring on C, or the finite field
Z, for certain prime p.

Proor. If there exists an x#0 in R sucht that A(x)=0, then A(x)=R. Let
L(d) = {y€R: yd = 0}. Since d is right distributive, L(d) is a subnear-ring and
since x€ L(d) we see that L(d)=R. It follows that R is the zero ring on the additive
group generated by d, which is clearly isomorphic to C,.

On the other hand, if R has no zero divisors, then aR=R for each a0 in R.
Now there exists e in R such that de=d and d(ed—d) = 0 implies that ed = d.
Let x be in R. Then (xe—x)d = 0 yields that xe=x and consequently e is a right
identity for R. Hence we see that R is a near field and (R, +) is abelian. Now let

H = {x€R: x is right distributive}.

It can be verified easily that H is a subnear-ring of R. Since e€ H, it follows that
H=R and hence R is a division ring. But any division ring without a proper sub-
ring is the finite field Z,.

Lemma 3.6. Let R be a near ring with no nonzero nilpotent elements and at
most one nonzero idempotent. If R has no proper subnear-rings, then R is a finite field.

Proor. For each x=0 in R, A(x) is a subnear-ring. Since x*=0, we see that
A(x)=0. Hence R has no zero divisors and xR=R. It can be easily verified that
R is a near field and the set of right distributive elements form a subnear-ring.
It follows that R is a finite division ring and hence a field.

Next we investigate the consequence of removing d.g. from the hypotheses of
Theorem 3.2.

Theorem 3.7. Let R be a near ring with no nonzero nilpotent elements. If R

has at most one nonzero idempotent and finitely many subnear-rings, then R is a near
feld.

Proor. We use induction on n(R), the number of proper subnear-rings of R.

(i) n(R) = 0. This is Lemma 3.6.

(ii) n(R) = k. If R has no zero divisors, then aR = R for each @ # 0 in R and
R is a near field.
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If R has a zero divisor x#0, then 4(x)=0. Now by inductive hypothesis A(x)
is a near field. There is an element ¢ in A(x) such that e*=e. Also xe=0 implies
that ex=0 and x is in A(e). By induction A(e) is a near field and hence contains
a nonzero idempotent w. But ed A(e) implies that e=w, a contradiction. This com-
pletes the proof.

Remark. Tt is not known whether or not the near field in Theorem 3.7. is finite.

4. Other finiteness conditions

Other finiteness conditions for rings and near reings involve finiteness of the
number of zero divisors. It was shown in [2] that a ring with a finite number of
nonzero divisors of zero is necessarily finite. This problem for near rings was studied
in [7] and it was proved that a near ring R is finite if it has a finite number of non-
zero right divisors of zero, while there is an infinite near ring with a finite number
of nonzero left divisors of zero. However, it was shown that if one of the left zero
divisor is right distributive, then the near ring is finite. Now we consider other
condisions which along with a finite number of left zero divisors insure that a near
ring is finite.

In the following ““zero divisor™ always means nonzero divisors of zero.

Theorem 4.1. Let R be a d.g. near ring with d.c.c. on R-subgroups, and suppose
moreover that R contains a nonzero idempotent which is not a left identity. If R has
a finite number of left zero divisors, then R is finite.

Proor. If the left annihilator L of R is trivial, then every right zero divisor
x is also a left zero divisor. For if x is not a left zero divisor, then the chain
XR2x*R2... implies that xR=R. Suppose a0 and ax=0. Let r be an arbitrary
element of R. Then there exists a 7 in R such that xr=r. But

0 = ar = a(xt) = (ax)t.

This contradicts that L is trivial. This says that R can have only a finite number of
right zero divisors. Hence by Theorem 2.1 in [7] R is finite.

Now suppose 0= L= R and our result is not true. Let R be a minimal counter-
example. By Theorem 2.3 in [7] we may assume that no nonzero right distributive
element is a left zero divisor. Thus for each nonzero right distributive element
d, dR=d*R=R.

Fron hypotheses, suppose e*=e and e is not a left identity. It is easily seen that
(e+ L) is idempotent in R/L.

If (e-+ L) is a left identity, then (ed—d) is in L for each right distributive element
d in R. Hence (ed—d)d = 0 implies that ed* = d*> But d*R = R implies that if
x is an arbitrary element in R, then there exists a y in R such that x=d*y. Thus
ex=ed*y=d*y=x. This is a contradiction.

Now R/L has d.c.c. and since (e+ L) is not a left identity, it follows that [3,
Theorem 2] R/L has zero divisors. Let (x+ L) be a zero divisor in R/L. Then there
exists y4 L such that xy€ L. Hence (xy)r=0 for each r in R. Since y§ L, there exists
a t in R such that yr=0. Hence x(y7)=0 implies that x is a zero divisor of R. Thus
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R/L has fewer left zero divisors than R. But this contradicts the minimality con-
dition of R. Our theorem is now established.

T. SzeLE has proved in [9] that if a ring R satisfies both the a.c.c. and d.c.c.
on subrings, then R is finite. Now we consider a similar result for near rings.

Theorem 4.2. Let R be a d.g. near ring with d.c.c. on subnear-rings. Then if
R has a finite number of left zero divisors, R is locally finite with a.c.c. on R-subgroups.

Proor. First we establish local finiteness, that is, every finite set of elements
generate a finite subnear-ring.

Case 1. R has no left zero divisors. Then R is a division ring, which must have
characteristic p, for otherwise it would contain a copy of the ring of integers. If
( ) denotes “subring generated by”, then for each a in R, (a)2(a*)2(d")=2 ...
must become stationary at some point and there exists a positive integer N such
that a*""'c(a*"), so that a is algebraic over the prime subfield of R. It follows that
(a) is finite and hence R has the “a"=a" property and is therefore commutative.
Local finiteness is immediate now.

Case 2. R has left zero divisors and the left annihilator L of R is trivial. Then,
as in the first part of the proof of Theorem 4.1, R is finite.

Now suppose that L=0 and our result is false. Let R be a minimal counter-
example. If R/L has no zero divisors, then R/L is locally finite by Case |1 above.
If R/L has zero divisors, then by the argument in the last part of the proof of
Theorem 4.1, it has fewer left zero divisors than R, which is a contradiction. Hence,
in either case, the finiteness of L plus local finiteness of R/L imply that R is locally
finite.

Now we wish to establish that R satisfies a.c.c. on R-subgroups. From above
R is locally finite. Hence for each x in R there exist different positive integers k and
J such that x*=x/, Thus x is either nilpotent or some power of x is a nonzero idem-
potent.

Suppose that 4, £4,S...S€4,<... is an ascending chain of R-subgroups.
If all the A; consist of nilpotent elements, then the chain must become stationary
because R has only a finite number of nilpotent elements. Otherwise some A4;
contains a nonzero idempotent e. If e is not a left identity, Ris finite by Theorem 4.1.
If e is a left identity, then since A, is an R-subgroup, A,=R. This establishes that
R satisfies a.c.c. on R-subgroups and the proof of our theorem is complete.

The following corollaries are immediate.

Corollary 4.3. Let R be a d.g. near ring having both the a.c.c. and d.c.c. on
subnear-rings. If R has a finite number of left zero divisors, then R is finite.

Corollary 44. Let R be a d.g. near ring with a finite number of left zero
divisors and a finite number of subnear-rings. Then R is finite.
Finally we would like to state the following two conjectures.

Conjecture 1. Let R be a d.g. near ring with a finite number of subnear-rings.
Then R is finite.

Conjecture 2. There is an infinite near ring with a finite number of subnear-
rings.
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