A new proof on the free product structure of Hecke groups

By RONALD J. EVANS (Madison, Wis.)

In this paper, matrices are viewed as linear fractional transformations on $H = \{\tau \colon \text{Im } \tau > 0\}$. Let $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $S_{\lambda} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$, and $A = A_{\lambda} = TS_{\lambda}$. Let Z denote the integers and let C denote the set of λ of the form $\lambda = 2\cos\left(\pi/q\right)$, where $q \in Z$, $q \ge 3$. It is well-known [2, p. 1399] that when $\lambda \in C$, the Hecke group $G(\lambda) = \langle A, T \rangle$ is the free product of $\langle A \rangle$ and $\langle T \rangle$ (write $G(\lambda) = \langle A \rangle * \langle T \rangle$). We present here a short new proof of this theorem. A short proof in the case $\lambda = 1$ is given in [1].

Lemma. Suppose that $\lambda \in C$, $\tau = x + iy \in H$, and $I \neq W \in \langle A \rangle$. If $x \ge 0$, then Re $(W\tau) < 0$.

PROOF. Write $\lambda = 2 \cos \alpha$ where $\alpha = \pi/q$. It is easily proved by induction that for all $n \in \mathbb{Z}$,

$$A^{n} = \begin{pmatrix} a_{n} & b_{n} \\ c_{n} & d_{n} \end{pmatrix} = \csc \alpha \begin{pmatrix} \sin \alpha (1-n) & -\sin \alpha n \\ \sin \alpha n & \sin \alpha (n+1) \end{pmatrix}.$$

Since A has order q, we may write $W = A^m$, where $1 \le m \le q - 1$. Write

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a_m & b_m \\ c_m & d_m \end{pmatrix}.$$

Then

$$\operatorname{Re}(W\tau) = \frac{(ax+b)(cx+d) + acy^2}{|c\tau+d|^2}.$$

Note that $a, b \le 0$ and $c, d \ge 0$. Hence, if $x \ge 0$, then $acy^2 \le 0$ and $(ax+b)(cx+d) \le 0$. Moreover, one of these two inequalities is strict; for, if (ax+b)(cx+d) = 0, then bd=0 so that m=q-1 and hence $acy^2 < 0$. Thus Re $(W\tau) < 0$. QED.

Theorem. If $\lambda \in C$, then $G(\lambda) = \langle A \rangle * \langle T \rangle$.

PROOF. Let $\lambda \in C$. Suppose that $I \neq W_j \in \langle A \rangle$ (j=1,2,...). By the Lemma, Re $W_1(i) < 0$, so that Re $TW_1(i) > 0$. It follows similarly by induction that for all $n \ge 1$, Re $TW_n ... TW_1(i) > 0$. It follows that I and T are the only reduced words in $\langle A, T \rangle$ which fix i, and hence $G(\lambda) = \langle A \rangle * \langle T \rangle$.

References

- D. Hardy and R. Wisner, New proof of a basic theorem about the modular group, *Publ. Math. (Debrecen)* 18 (1971), 109—110.
 R. C. Lyndon and J. L. Ullman, Groups generated by two parabolic linear fractional transformations, *Can. J. Math.* 21 (1969), 1388—1403.

RONALD J. EVANS UNIVERSITY OF WISCONSIN MADISON, WISC, 53706 U.S.A.

(Received July 25, 1973.)