A non-modular affine matroid lattice satisfying Euclid's strong parallel axiom is simple

By M. STERN (Debrecen)

Dedicated to Professor András Rapcsák on his 60th birthday

§ 1. Introduction

O. ORE has proved in [5] that every partition lattice is simple (cf. [5, § 5 Theorem 8, p. 626]). Our aim is to prove the same theorem for another kind of matroid lattices. As a corollary we get a solution to a problem of M. F. Janowitz posed in [3]. Naturally, this solution follows as well from Ore's theorem.¹)

§ 2. Basic terminology

Let in this paragraph L be a lattice with 0. L is called weakly modular if [a) is modular for every a>0 (cf. [4, Definition 1.10, p. 3]). We remark that G. GRÄTZER and E. T. SCHMIDT have defined weak modularity in quite another sense (cf. [1, Definition 4, p. 162]). In L perspectivity is introduced as follows (cf. [4, Definition 6.1, p. 26]): we say that $a, b \in L$ are perspective and write $a \sim_x b$ or simply $a \sim b$ when

$$a \cup x = b \cup x$$
 and $a \cap x = b \cap x = 0$

for some $x \in L$. L is called atomistic if every element of L is the join of a family of atoms. Let F(L) denote the set of elements of L that may be expressed as a join of a finite (possibly empty) family of atoms. We say that in a lattice L the element $a \in L$ covers the element $b \in L$ and write $b \prec a$ in case $b \prec a$ and $b \le x \le a$ implies x = b or x = a. The covering property (C) is introduced as follows: (C) if p is an atom and $p \not \equiv a$ then $a \prec a \cup p$. We call L an AC-lattice if it is an atomistic lattice with covering property. In an AC-lattice the set F(L) is always an ideal (cf. [4, Lemma 8.8, p. 37]). In every AC-lattice L one can define the height h(a) of an element $a \in L$ (cf. [4, Definition 8.5, p. 36]). If L is an AC-lattice with 1 then h(1) is called the length of L. An element $a \in L$ is called a line if h(a) = 2. A matroid lattice may be defined as an upper continuous AC-lattice.

Now following the terminology of G. GRÄTZER and E. T. SCHMIDT (cf. [2, p. 30]) we call an ideal S of a lattice L standard if $I \land (S \lor K) = (I \land S) \lor (I \land K)$ holds for

¹⁾ This was remarked by M. F. Janowitz in a written communication.

44 M. Stern

any pair of ideals I, K of L. An ideal S of L will be called homomorphism kernel if there exists a congruence relation Θ of L such that L/Θ has a zero element and $S = \{a \in L | a/\Theta = 0/\Theta\}$. An ideal S of L is called p-ideal if L has a zero element and S is closed under perspectivity. The assertion of the following lemma is well-known, therefore we give no proof here.

Lemma 1. Let L be a lattice with 0 and let S be an ideal of L. Then the following implications hold in L: S standard ideal \Rightarrow S homomorphism kernel \Rightarrow S p-ideal.

§ 3. Affine matroid lattices

To introduce this kind of matroid lattices we need the notion of parallel elements

Definition 2 (cf. [4, p. 72]). Let L be a lattice with 0 and let $a, b \in L$ ($a \neq 0$, $b \neq 0$). We write a < |b| when

$$a \cap b = 0$$
 and $b \prec a \cup b$.

When a < |b| and b < |a| then we say that $a \in L$ and $b \in L$ are parallel and write a || b|.

Now we are ready to formulate Euclid's parallel axioms (cf. [4, Axiom 18.1 and Axiom 18.2, p. 78]).

Axiom 3 (Euclid's strong parallel axiom). Let d be a line in a matroid lattice. If p is an atom with $p \le d$ then there exists one and only one line e such that $d \parallel e$ and p < e.

Axiom 4 (Euclid's weak parallel axiom). Let d be a line in a matroid lattice. If p is an atom with $p \not\equiv d$, then there exists at most one line e such that $d \mid e$ and p < e.

After this we can define affine matroid lattices.

Definition 5. (cf. [4, p. 78]). Let L be a weakly modular matroid lattice of length ≥ 4 (L may be of infinite length). When L satisfies Euclid's weak parallel axiom we call L an affine matroid lattice.

With the aid of parallelity we define in affine matroid lattices (more generally: in weakly modular AC-lattices) complete and incomplete elements.

Definition 6. (cf. [4, p. 78]). In an affine matroid lattice L a line d is called complete when there exists no line parallel to d, and d is called incomplete when there exists a line parallel to d. An element $a \in L$ of height ≥ 2 is called incomplete when every line contained in $a \in L$ is incomplete.

The following lemma tells us something more about the connection between incomplete elements and parallel elements.

- **Lemma 7.** (cf. [4, Corollary 18.13, p. 81]). Let L be an affine matroid lattice and let $a \in L$ be an element of height ≥ 2 . Then the following statements are equivalent:
 - (i) $a \in L$ is incomplete and $a \neq 1$;
 - (ii) there exists an element $b \in L$ with $a \parallel b$.

Finally we need a fact about non-modular affine matroid lattices.

Theorem 8. (cf. [4, Theorem 14.7, p. 61]). A non-modular affine matroid lattice is irreducible and hence any two of its atoms are perspective.

§ 4. Proof of the theorem

First we need the following

Lemma 9. Let L be an affine matroid lattice, which satisfies Euclid's strong parallel axiom. Then there exists an atom $s \in L$ and a dual atom $n \in L$ such that $s \sim n$.

PROOF. We show that there are in L two dual atoms m_v , n such that

$$(*)$$
 $m_v || n$

From this follows the assertion: take an atom s < n. Then $s \sim_{m_n} n$.

Now we prove (*). Let

$$1 = \bigcup (a_{\nu} | \nu \in \Gamma)$$

where $\langle ..., a_v, ... \rangle_{v \in \Gamma}$ is a maximal independent set of atoms. We define

$$m_{\nu} \stackrel{\text{def}}{=} \bigcup (a_{\mu} | \mu \in \Gamma, \ \mu \neq \nu).$$

Then $m_v \cup a_v = 1$ and $m_v \cap a_v = 0$, therefore $a_v \not\equiv m_v$ and $m_v \not\equiv 1$. From $m_v < y \le \le m_v \cup a_v = 1$ we get by the covering property (C) that y = 1. Therefore m_v is a dual atom.

Since in L every line is incomplete, every in m_v contained line is incomplete. This means that m_v is an incomplete element of L. Then m_v fulfils condition (i) of Lemma 7. According to condition (ii) of the same lemma there exists an $n \in L$ such that $m_v || n$. By definition 2 we have $n < m_v \cup n = 1$. Hence n is a dual atom which proves the lemma.

Now we can prove the theorem indicated in the title of this note.

Theorem 10. Let L be a non-modular affin matroid lattice which satisfies Euclid's strong parallel axiom. Then L is a simple lattice.

PROOF. Let Θ be a congruence relation of L and suppose that

(1)
$$\Theta > \omega$$

where ω is the least congruence relation of L. Consider

$$I = \{a \in L | a \equiv 0(\Theta)\}$$

I is the kernel of Θ and hence a homomorphism kernel. It follows from Lemma 1 that I is a p-ideal. Because of (1) there is an $(0 \neq) a \in L$ such that $a \in I$. L is atomistic, hence we can find an atom $q \in L$ such that $q \not\equiv a$. From this we get

$$(2) q \in I.$$

Let now $r(\neq q)$ be an arbitrary atom of L. Since L is non-modular, it is irreducible and we have

(3)
$$q \sim r$$
 (cf. Theorem 8).

Since I is a p-ideal, it follows from (2) and (3) that $r \in I$. This means that every atom of L is contained in I. Hence all finite unions of atoms are in I and therefore

$$(4) F(L) \subseteq I.$$

46 M. Stern

Now by Lemma 9 there is an atom $s \in L$ and a dual atom $n \in L$ such that

 $(5) s \sim n.$

Since I is a p-ideal, it follows from (4) and (5) that

(6) $n \in I$

Since L is atomistic and n is a dual atom, there is an atom $t \in L$ such that

 $(7) t \leq n.$

By (4) we get

 $(8) t \in I.$

Now (6), (7) and (8) give

 $1 = t \cup n \in I$.

This means that I=L. Hence L has only the trivial congruence relations which proves the theorem.

Corollary 11. Let L be a non-modular affine matroid lattice which satisfies Euclid's strong parallel axiom. Then the following two conditions are equivalent:

(i) F(L) is standard ideal in L;

(ii) L is of finite length.

PROOF. If L is of finite length then F(L) = L is trivially a standard ideal of L. Let now F(L) be a standard ideal of L. By Lemma 1 F(L) is a homomorphism kernel of L. By Theorem 10 L is simple and therefore we get F(L) = (0) or F(L) = L. In both cases L must be of finite length which was to be proved.

Corollary 12 (cf. [6, Theorem 6]). There exists a matroid lattice L such that F(L) is not a standard ideal of L.

PROOF. Take a non-modular affin matroid lattice L of infinite length which satisfies Euclid's strong parallel axiom. Then by Corollary 11 F(L) is not standard in L.

This corollary provides a solution to the following problem of M. F. JANOWITZ (cf. [3, Problem 4, p. 346]): Is F(L) a standard ideal for L an arbitrary AC-lattice? What is if L is a matroid lattice?

References

 G. GRÄTZER—E. T. SCHMIDT, Ideals and congruence relations in lattices, Acta Math. Acad. Sci. Hungar. 9 (1958), 137—175.

[2] G. GRÄTZER—E. T. SCHMIDT, Standard ideals in lattices Acta Math. Acad. Sci. Hungar. 12 (1961), 17—86.

[3] M. F. JANOWITZ, On the modular relation in atomistic lattices, Fund. Math. 66 (1969-70), 337-346.

[4] F. MAEDA-S. MAEDA, Theory of Symmetric Lattices Berlin, 1970.

[5] O. Ore, Theory of equivalence relations Duke Math. J. 9 (1942), 573-627.

[6] M. STERN, On a problem of M. F. Janowitz to appear in Beiträge zur Algebra und Geometrie 4.

M, STERN SEKTION MATHEMATIK MARTIN-LUTHER-UNIVERSITÄT HALLE 402 HALLE, GDR

(Received May 7, 1973.)