Linear order statistics in the case of samples
with non-independent elements

By BELA GYIRES (Debrecen)

Introduction

Let x,, ..., x,,., be pairwise different real numbers. If in the rearrangement
according to size z;=...<z,,, of these numbers x, =z, , than we say that x;, has
rank r,, rank x,=r,.

Let R, ., be the vector space of dimensions m+n and let one of the variations
without repetition of class m of the elements 1, ..., m+n be ry, ..., r,. Let moreover

Opy.ovrm = X1 oo s Xmsn) € RyynlX; # X, J # k, and rank x, =ri(k =1, ..., m)}.

As is known, in the theory of order statistics a fundamental role is played by
the following theorem ([8], 263, Satz 10):

If the common distribution function of the identically distributed random
variables &,, ..., .+, 1S @ symmetric function of its variables and continuous in
each of the variables, then

I
(]) P((‘:l! e émé-n)Ewn.....r,,,)

T+ ... n+m)

The conditions listed will be satisfied, if &,, ..., &, 4, are identically distributed,
idependent random variables with continuous distribution function.

If the random variables are identically distributed and the common distribution
function is continuous in each of its variables, but no symmetric function of the
variables, then the above theorem fails in general to be true. In this case we have
more generally

) PUE v Bt BRI Vo i s
where
Prisr = O 2 Pry, v =1
(rl..._,rm)enfﬂma-u]

with []!m+" denoting the set of variations without repetition of order m of the
elemetns 1, ..., m+n.

In the present paper we are going to consider linear order statistics in this
general case, i.e. in the case of non-independent samples too.
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In the first chapter we generalize the notion of linear order statistics. In the
second chapter we consider infinite stochastic matrices of special types playing
a role in the construction of linear order statistics, while the third chapter is devoted
to limit theorems built on the characteristic functions of linear order statistics.
In the fourth chapter we give a procedure for the construction of linear order sta-
tistics with a given limes distribution. The constructions employed are built — with
the exception of only two cases — on the theory of mechanical quadrature. For
one of the exceptions, we use one of the criteria of Riemann-integrability. For the
case when (1) is valid, constructive procedures different from those here exposed
have been given by the author in his papers [4] and [5].

Throughout the whole of the exposition, a fundamental role will be played
by the weak convergence of random variables. We denote it by the symbol =.
For different definitions of this notion and their interdependence see [3], 37—38, 58.

1. Linear order statistics
1.1. Let the stochastic matrices
J piY
P piy
(3) A A (k=1,2..)
|

(k) ,, (k) (k)
vl)prﬂ et

be given, i.e. let

Let B, denote the matrix with m rows and v = m+n colums:

(1) (1)

Pvl vig Pw
B, =]ccreencea :
(
p... o

again, let By be the matrix having m rows and $, columns, each column of which
is equal to the k-th column of the matrix B,,,. Let (BY...B;”) be the matrix with
m rows and B,+...+p, columns, obtained by writing successively the matrices
B, ..., ByY. If B,=0, then the k-th column of th matrix B,, is absent from the
matrix (Bj)...B”). Let [\ denote the set of variations without reptition of class
m of the elements 1, ..., v, and we denote the permanent of a matrix by the
symbol Per.
We introduce the following matrix operations:

G(Bw,) = > Per(Bf...B}") =
Bi+... 4B, =m
i

2
ek fu=m
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1

. |~ ¥ Per (BX.. B¢ =— 3 Per(B¥... B%),
1=k, <...<k,=v m: ky,...k e
H(B) = Per (Bf) ... By,
myv) = Z er ( By v 3\')'
ht+...+B,=m
o +phom
Let the matrices with real elements
aff
ald aly &wld o)

be given.

Definition 1. By the linear order statistics {A,, S,} we mean the stochastic
process

Smn=Mm+ .. tmw, v=m+n (m=12..;n=0,1,..),

provided
W _ m) _ (m, _ Per (BM ... B{™) 0
y P(nrm -— avkp veey Mym = avkm = M!G(.Bmy) ’ (kh Rauy km)Enm
an
(4) G(Bm,)—- I, n—+c (m:l,z,...).

From this can it count the probabilities

P(nR) = a) = pi+Y (j=1,...,)

Definition 2. The linear order statistics {A,, S,} is asymptotic, if for any
natural number m there exists a random variable &,,, such that

Cmon = Gm» M= ==,

Definition 3. The linear order statistics {Ay, S} is doubly asymptotic, if
there exists a random variable ¢ such that

cm.n'_""c !f n — oo, and then m — o,

We shall also say that the linear order statistics has asymptotically &,
(m=1, 2, ...) distribution and doubly asymptotically ¢ distribution respectively.

Clearly, a linear order statistics having asymptotically &, (m=1,2,...)
distribution is doubly asymptotic if and only if ,=¢&, m — <.

1.2. Let ¢&,,...,¢, and n,,...,n, be samples of continuously distributed
random random variables ¢ and »n respectively. If we suppose that in case £ and 75
have the same distribution, the random vector (&,, ..., &y M, ..., 11,) formed from

4D
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the respective samples satisfies condition (2), where

5 Per (Bg’l) ik B(I.PM).)
(5) Pn cefm T m! G(Bmv) d

vV=m-+n

then with respect to accepting or rejecting the hypothesis
P(E<=x)= P(n<x)

we can make the following decision:

If (&yyoiis Ss Mis s My €@y, .., then the question is settled by the falling
of al}) +.. +a{,’?“ into the domain of acceptation or into the critical domain. The
test itself will be constructed on the basis of the distribution (5) or in the case of
asymptotical linear order statistics for sufficiently large n, and in the case of doubly
asymptotic linear order statistics for sufficiently large n and m with the help of the
limit distribution.

2. Stochastic 7-matrices

2.1. The infinite matrix

Pu

Pa Pae
(6) % b

Ipvl pv2 P
is said to be a stochastic 7T-matrix, if ([1], 64)
(7) Py&0, Zp,=1 (j=1,..,v;v=1}2..)
=1

and J
(8) mMax (Pyys s Pyy) = 0, v-—oo

Examples of stochastic 7-matrices:
Example I. The so-called matrix of arithmetical means built from the elements

. .
pyj== is a stochastic 7-matrix.

Example 2. 1f 0<=p-1, p+q = 1, then the matrix (6) built from the elements

v—1
Mg = L..] Pag
is a stochastic 7-matrix.

PrROOF. By the theorem of LAPLACE.

max (p Pw) ~ —] —O[ I
ke G V?Jt(v—l)pq Yv—1

and from this our statement follows.
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Example 3. Let r be a natural number. The so-called matrix of Cesaro-means
built from the elements
(v +r— l)
r

Proor. ([1], 69). Putting in the well-known identity

(e[ @il Bl ey

v4r—j—1
Fsj ™= [ r—1 J

is a stochastic 7-matrix.

= \v—j—1

j=1

first r=0 and then p = r—1, we obtain (7) for natural numbers r. Since moreover
d,;=p,, and

v

: . r
lim p,; = lim — = 0,
V- oo v

wos Y —

(8) also holds.

Example 4. If p,, ps, ... is a sequence of positive elements, P, = p,+...+p,
and %—-O, v-—c=, then the matrix (6) built from the elements p‘.j=p";—j+1,

L
the so-called Norlund matrix, is a stochastic 7T-matrix.

2.2. In this section we prove a theorem playing an important role in the con-
struction of linear order statistics.

Theorem 1. If the matrices S, (k=1, 2, ...) are stochastic T-matrices, then (4)
holds.

Proor. Condition (8) being equivalent to
) el o LS

we are going to show that (9) immplies (4). The proof will proceed by induction.
For s=2 we have

;
G(By) = Zpwp’ =1— 2 pi}pid.
1

k=1 j=

Using Cauchy’s inequality, we thus obtain from (9) the statement to be proved

for s=2.
Suppose now that the theorem is true up to the natural number m, i.e.

G(B,.) 1, n=>e (=12 ...m).

Let M be the matrix having v rows and m columns and having each of its ele-
ments equal to 1. By the expansion theorem of CAUCHY—BINET ([6], 579)

(10) %Per(Bm. M) = G(B,,)+H(B,,) = [ (L +..-+pD) = 1.
: Jj=1

By the induction hypothesis (10) implies
(11) H(B,) =0, n— .

4*
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Starting with the identity (10), we get

] = (p(m+l)+ .+ p! m+.l.)) H(p(‘)_', +p(1)) —
(12)
On the other hand

= G(Bn)(PT*V+ ... +pV*V) + H(B,,).

@G+ ... + 04 G (Bmy) =

g kz;eﬂm Per (Bi™ ... BY™)(pVi, "+ ... +pVk, )+
v fm m

+ T Pa(B®..B0E 04 ... 405
Chgpoins K IESY?

(13)

vhere pF*V+... +pi*? is the sum of the v—m members remaining from
PP p"”*” if we omit pZ*Y, ..., p&*Y. Clearly,

(14) > Per(B®... Bf)0R T+ ... +p% ") = G(Buiw)-

Ky, oonnk, )EIL)
Moreover we see easily that

(ky) k) (m+1) (m+1
kys ok )enmPer (BY"... By )Pk, + ... +Pw, ) =
| ERERI R m

(15)
- Z (m+ 1 Zp(t)G(B(r:;J))’

j—

where B{%7 denotes the matrix obtained from B, by omitting the a-th row and
the j-th column. Thus we infer from (12) by making use of the indentities (13), (14)
and (15) the identity

(16) G(By 1)+ H(B,,) + _ZP?}'”’ ZPi}’G(B.E.";”) = 1.

Making use of the inequality G(B,,)=1 obtained from (10), we see that

| = G(Byr) +HBu)+ 3 2 p9pin+D.
a=1 j=1
By virtue of (9) and of Cauchy’s inequality the third member on the right hand side
tends to zero if n— =, and by (11) the same in true for the second member. Thus
liminf G (B, 41,) = 1.

H— e

By one of our previous remarks
limsup G(B,,:1,) = 1
A= oo

and so
G(Busry) =1, n—+ oo,

This completes the induction.
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The converse of Theorem 1 fails to hold in general. Indeed, if (4) holds, then
from the identity (16) we infer that for any pair of different natural numbers «, f8
the relation

v
121 p&@pH -0, n—+ e

must be valid. This condition can however be satisfied even if (8) fails to hold. E.g. let

1 1
@ — 5 — () — (B —
Pv1 Pwy 7 * Pv; Pvf 2(V— l)
(G=2 v I=1, e v=1).
Then
L3 1 v—2
(@) (A —
jg;pﬂ Pyj 2(v—1) ¢ 3 4(v— ])2

“’0. Yy - oo

while (8) fails.
If, on the other hand, S,=S (k=1,2,...), then the matrix B,, consists of
columnwise identical elements. In the detailed expression of S is given by (6), then

G(Bmv) e Z pvh ee p\'k,,,

kyy-onn k) €YY

and from (16) we obtain in case of the validity of (4) the consition p?, + ... +p2, -0,
v— o, From this, however, (8) already follows. Thus we have established the following

Corollary 1. The stochastic matrix S is a stochastic T-matrix, if and only if

i F )EH(” p"kl dvrs p"km e ], n -+ oo (m = ], 2, ...).
l""' m m

3. Limit theorems

3.1. In this section we shall state and prove the limit theorems playing a central
role in the present paper. In this first subsection we prove a theorem upon which
we intend to build the proofs of the limit theorems just mentioned.

Let the matrix with complex elements

7 o] s s

be given.

Theorem 2. If the stochastic matrices having detailed from (3) satisfy condition
(4), and if

(18) el =1 =1, .am; k=1,..,9),
then uniformly in zj
(19) lim [G(ZuwB;r)_'Per (ZMVB:W)] =0 (m = 1'! 2! )
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ProOOF. Again by the expansion theorem of Cauchy—Binet

(20) Per(Z,.,Bn) = G(Z,, Bn,) + H(Z,,, Bn,),
where now we have
(s D) o Z ’ _:_Pcr (ZX ... &) Per (B ... B,
H(ZmyB) = e % T Ay 3 ﬁ| e Per (257 ... Z) Per (BD ... BD).
+. +§¥-~m

By condition (18)
Per (Z§ ... Z§?) = m!
and so we get from (20)
|G(Z y Bhy) — Per (Z,, Bjyy)| = m! H(B,,).

Conditions (4) being satisfied, we have H(B,,)—~0, n—~ <, and this already yields
the proof of our theorem.

On the basis of Theorem 1. one has the folloving

Corollary 2. If S, (k=1,2, ...) is stochastic T-matrix and (18) holds, then the
statement of (19) is valid.

If S$,=8 (k=1,2,...) is the stochastic 7-matrix having detailed from (6), then
B,,, consists of columnwise equal elements. Thus our Theorem 2 yields the following

Coroﬂar_} 3. If §,=8 (k=1,2,...) is stochastic T-matrix and (18) holds, then
unifarmly in zy

lim %G(z_‘.m* [T Gapat it zpnpd| =0 m=12.)
n==oo 1 j=1
with

| %
—G(ZmBuw) = 3 Per (ZX... ZFYp, - P

1=k;=<...<k,=v
3.2. In the theory of linear order statistics as we have defined them, a role
of fundamental importance is being played by the following

Theorem 3. Let the linear order statistics {A;, S,} be given. If ¢,, (t) denotes
the characteristic function of the random variable &,, ,, then uniformly in t

”]LIE [(pm',,(r)—m!G—](B.)Perd?,(t) =0 (m = 1:2. .}

with

oY1) ... e (1)

Pl () ... Qo (?)

where (p v(t) is the characteristic function of the random variable which takes the
values a‘{’ ., a¥) with probability pi¥, ..., p® respectively.
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PrROOF. By the definition of characteristic functions, the function ¢, (1)
can be obtained by putting z=¢" into the expression

ek ' ok +..+alln) (k) k)
—_— z vlsl . vk Per B 1 o B - y
m! G(Bm) ,,...iens (By ™)
Now, if
-l!t}‘ Z‘IE’:’]
- AR ) DR E— A
ﬂ,(m) “(m|
¥4 vl iy
then
I .
@m,n(l) = Wl g = - Per{Zi"‘) Zi"‘m}) Per (B{Ik].).l' B(lk...)) -
2 my ERy<...<k, SV
*
e G(ZM'I'BFIH') ' o= eir
m!G(Bn,) = '

On the other hand,
[ZMVB:w]:=e“ = (p‘.(f).

Since ]e"‘i'?]|=l, we can establish the theorem by using formula (19) from
Theorem 2.
The following theorems are direct consequences of Theorem 3:

Theorem 4. The linear order statistics {A,, S,} is asymptotic if and only if for
m=1, 2, ... there exists the limit of the sequence
|
—Per®, (1) (v=1.,2,...), t€ER,
m!
as n— oo, and this limit is continuous at the origin. Thus in this case

lim ¢, ,(1) = lim %Pcr ®D.(1), teR, (m=1,2,...).

Theorem 5. The linar order statistics {Ay, Sy} is doubly asymptotic if and only
if the sequence

%Pcr D) (=12 ..)

has a limit as n—~ > and then m—~ =, t€ Ry, and this limit is continuous at the origin.
Thus in this case

lim ¢, ,(f) = lim —I-Pcr d,(1), I€R,.
et nvo !

- oo - oo

33. If S§;=8 (k=1,2,...) then the linear order statistics corresponding to
Definition 1 will be denoted by {4,, S}.

Let n{” bee then random variable which takes the values a!{, ..., a$ with
probability pi{, ..., p!} respectively.

From Corollary 3 we obtain the following
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Theorem 6. Let the linear order statistics {A,, S} given. If @, (1) and (1)
denotes the characteristic function of the random variable &,, , and n” respectively, then
uniformly in t

1im | 9 o)~ 900 - 00| =0 (m=1,2, ..

From Theorem 6 we infer the following two theorems:

Theorem 7. The linear order statistics {Ay, S} is asymptotic if and only if for
m=1,2, ... there exists the limit of the sequence p™(t)... p™(t) (v=1,2,...) as
n—co, 1€ Ry, and this limit is continuous at the origin. Then

@) lm () = lim [0P(0) ... (O, 1€R, (m=1,2, ...

Theorem 8. The linear order statistics {Ay, S} is doubly asymptotic if and only
if the sequence (1) ... o™ (¢) (v=1,2,...) has a limit as n—~<> and then m— o,
t€ R, and this limit is continuous at the origin. Then

lim @, ,(1) = lim [@{(?) ... 9™ ()], 1€R,.

-~ oo m-—-oo
If for any natural number k there exists a characteristic function ¢®(¢) so that

o®(t) - e®(t), n—~ e, tcR (k=12..),
then on the basis of (21)
lim @, ,(t) = @V (1) ... 9™(1), t€ER,. (m=1,2,..).

Thus we get the following

Theorem 9. If for each matrix A, from the linear order statistics {Ay, S} there
exists a random variable n® such that n® =y, v — o, then this linear order statistics
is asymptotically NP+ ... +n"™ (m=1, 2, ...) distributed and the random variables
nW, n'®, ... are independent.

4. The construction of linear order statistics

4.1. Theorem 9 and Corollary 1 make it possible to construct linear order
statistics. For this purpose we must realize the following steps:

a) To construct a stochastic T-matrix.

b) To construct a sequence A, (k=1, 2, ...) of matrices, so that on each matrix
A, the sequence of discrete random variables defined with the help of the stochastic
T-matrix is convergent in the weak sense.

In what follows, we shall construct linear order statistics in this manner.
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Theorem 10. If O<p<1 and p+q =1 then the linear order statistics {A;, S}
formed with the help of the quantities

au;) s f‘_] _'("_])P
3 Vo —T)pg
(it E=1 2.0

is asymptotically normally distributed with expectation zero and with variance
m (m=1;2...)

— V—] J=1_v=]
(22) Pyj [j_])p q

PrOOF. By virtue of example 2 in 2.1 the matrix (6) formed with the quantities
p,; of (22) is a stochastic T-matrix.

The random variable n* formed with quantities a{§ of (22) has standardized
binomial distribution with parameters p and v—1. By the theorem of Moivre—
Laplace the sequence n!® (v=1, 2, ...) weakly converges to the normal distribution
with zero expectation and unit variance. On the basis of this and with the help
of Theorem 9 we obtain the proof of our theorem.

4.2, Let the triangular matrices with real elements

X1 Cu
Xg1 Xag Cy Cy
BT R, P . RS
Xy Xye Xyy Cvl Cv2 va

be given. The elements of X and of C will be called abcissas and Cotes numbers
respectively. Suppose, that the elements of X fall into the interval [a, b] and that
the elements in each row of X are pairwise different. Then for any function f(x)
defined on the interval [a, b], the expressions

0.(f) =j§,; Cuf() (=1,2,..)

make sense. In case f(x) is integrable on [a, ] and

b
0,(f) ~ [fXdx, v~ e,

we say that for the function f(x) the quadrature process (X, C) belonging to the
matrices X and C converges.

Theorem 11. If the Cotes numbers are nonnegativ and the quadrature process
(X, C) is convergent for any continuous function defined in the interval [a, b), then
the matrix (6) formed with the quantities
C,;
thadlet < ¥ i

is a stochastic T-matrix.

(23) (=100, vs= 1,2 )
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If, moreover, f(x) (k=1, 2, ...) are continuous functions defined on the interval
[a, b], and the elements of the matrix A, are the numbers

(24) a‘*'—fk(xw) G=1 .., v k,yv=1,2, ...),
then the linear order statistics {A,, S} has asymptotically

(25) LD+ .. +fullw) (m=1,2,..)

distribution, where (., (s, ... are random variables independent from each other,
and uniform distributed in the interval [a, b).

Proor. If f(x)=1 then _? C,; = Q,(1), i.e. conditions (7) are valid for the

numbers (23). Now the elements of the matrix C. are nonnegative numbers, and the
quadrature process (X, C) converges for any function defined and continuous
in the interval [a, b], so that (8) also holds ([7], 459, Satz 4). Thus however the matrix
(6) formed with the quantities (23) must indeed be a stochastic 7-matrix.

Just as before, we shall denote the discrete random variable made to corre-
spond to the v-th row of the matrix 4, by n!¥. Since cos fi(x) and sin f,(x) are continuous
in the interval [a, b] for continuous f(x), we have

(k)

?, m(!) = E(e"™") = E[cos (1)) +iE[sin (n®1)] =

Q “) [Q (COSI'fk(\‘)])'HQ (Sll‘l [{ﬂ(.\‘)])]

- Tb"l-_a[f cos [tfi(x)] dx+i [ sin [ifi(x)] dx| =

l b
= 9y fe‘"fk(—")dx = q’fl.-((k)(t), ¥ = eo,

i.e. nW=£((,), v—=-==. The second statement of our theorem follows from this
directly with the help of Theorem 9.

4.3. If between the matrices X and C there exists the relation

b
cyj:f;,j(x)d.\- =1 v v=12..),
where i

(26) D) o e

w'(xvj)(x . xvj) 4

wv(x) e H(x"'xvj)

j=1
is the Lagrange-polynomial belonging to the abscissas x,,, ..., x,,, then we say that
the quadrature process (X, C) is an interpolation quadrature.

Theorem 12. [f the Cotes numbers of the interpolation quadrature (X, C) are
nonnegative, then the matrix (6) formed with the quentities (23) is a stochastic T-matrix
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If, moreover, f(x) (k=1,2,...) are bounded Riemann-integrable functions
defined on the interval [a, b] and the elements of A, are the quantities (24), then the
linear order statistics {A,, S} has asymptotically the distribution (25).

ProoF. By Fejér's theorem ([2], Satz I) an interpolation quadrature process
with nonnegative coefficients converges for any bounded Riemann-integrable func-
tion. Thus we can prove our theorem by employing the method of proof of Theo-
rem 11.

From this theorem we obtain as corollaries the following results:

a) If a=—1, b =1 and the x,; are the roots of the Cebisev polynomial
T (x), e.i.

2j—1
Xyj = €OS j2v ® (f=1, .:i57)

then, as was shown by L. Felfr ([2], Satz II),

: T,(x)
Cv- — Y dx - 0.
v _.lf (x_"“‘vj) Tv(xvj)

Thus, by putting f,(x)=x in Theorem 12 we obtain the following
Corollary 4. If

1
1 T\{x) dx a:ﬁ] = X

p‘.j = _f b (-"_‘x\-j) Tv(xvj) ‘

L, ¥ Re¥ a3 12 n )k
where
2j—1
2v

X,j = COS % = Toaiu

is a root of the Cebisev-polynomial T,x), then the linear order statistics {A4,, S}
has asymptotically (4 ...+(, (m=1,2,...) distribution, where (,,(,,... are
independent random variables uniformly distributed in the interval [—1, 1].

b) Ifa =—1, b = 1 and the abscissas are the roots of the CebiSev-polynomials
of second kind
sin (v + 1) arccos x

U,(x) = T
-_X

% .
X,j = COS ‘:f+] (=1 ..,v),

then the Cotes numbers C,; are positive ([2], Satz 11L.). If we again put fi(x)=x
in the Theorem 12, we obtain the following

Corollary 5. If

1 " jn
Pv; = 3th a:'.i} = cos v+ 1
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where the C,; are the Cotes numbers belonging to the abscissas formed from the roots
of the Cebisev polynomials of second kind, then the linear order statistics {A,, S)
has asymptotically (,+...+(,, (m=1,2,..) distribution, where (,,(,,... are
independent random variables, uniformly distributed in the interval [—1, 1].

4.4. Let us suppose that the density function p(x) of the random variable ¢
defined on the interval [a, b] is positive outside a set of measure zero. Let {w,(x)}
be the system of orthogonal polynomials belonging to the density function p(x).
As is known, the roots x,;, x,3, ..., X,, of the polynomial w,(x) fall into the interval
[a, b] and have multiplicity one. If we now choose these roots as abscissas and

b
(27) Cy= [ o) (Mdx (J=1,..,v; v=1,2,..),

where the polynomials /,;(x) are defined by formula (26), then the interpolation
quadrature process (X, C) will be called Gaussian quadrature.

As was shown by T. I. STieLTIES ([9]), the quantities (27) are positive, and
for any function f(x) defined and continuous on the interval [a, b]

b
(28) 0,(f) = [ f()p(x) dx.

Theorem 13. If (X, C) is a Gaussian quadrature, then the matrix (6) formed with
the quantities p,;=C,; is a stochastic T-matrix. If, moreover, f(x) (k=1,2, ...) are
Sfunction defined and continuous in the interval [a, b], and the 'ements of the matrix
Ay, are the numbers (24), thenthe linear order statistics {A_ S} is asymptotically

L)+ tfullw) (m=1,2,..)

distributed, where &, &, ... are independent random variables with the common
density function p(x).

Proop. We have ([7], 438)
. b
_Z{C,j = fp{x)dx = 1,
C a

and by the theorem quoted of Stieltjes the numbers C,; are positive, so that our
first statement follows by (28) from formula (8) valid in the present case too.

In order to establish the second statement of our theorem, we first show
— in exactly the same manner as was done for the analogons statement in Theorem
10 — that pM=f(&), v— =, where ¢ is a random variable with density function
p(x). Hence, with the help of Theorem 9, the statement itself follows.

Now we are going to consider special cases of Theorem 13.

a)If a=—1, b=1, p(x) =1, then the orthogonal polynomials are the
Legendre polynomials

1 d' 2 v et
P,(x) = Gnni dx"(x 1% Yei ik iai
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If this has roots x,,, ..., X,,, then it can be shown ([7], 443) that
) 1
N = N S F
So, by making the choice f,(x)=x, we get from Theorem 13 the following
Corollary 6. If

1 1 .
Pvi = ==, B aP=x, (j=1..,v;kv=12.),

where x,,, ..., X,, are the roots of the Legendre polynomial P,x), then the linear
order statistics {Ay, S} is a asymptotically (,+...+C,, (m=1,2,...) distributed,
where {,, (s, ... are independent random variables, uniformly distributed in the interval
[—1, 1].

b fa=-1,b=1, pix) =

C

1 "
————, then the orthogonal polynomials are
i I
the Cebisev polynomials

T,(x) =cos(varccosx) (v=1,2,...).

This polynomial has roots
2j—1
2v

and C,; = % ([7], 444—446). Thus, again by putting f,(x) = x, we obtain from
Theorem 13 the following
Corollary 7. If

X,; = COS -l £ BN, |

p,,=—i—. aé‘}’:coszjz: ® (=1 0.0k y=102050),

then the linear order statistics {A,, S} is asymptotically &, +...+¢&,, (m=1,2,...)
distributed, where &,,¢&,, ... are independent random variables having the same

1
—_— -1, 1).
ny1—x2 *€( )

c) If a=—1, b=1, p(x) = J1—x% then the orthogonal polynomials are
the CebiSev polynomials of the second kind

distribution function

sin [(v + 1) arccos x]

O{x)= =18 )
=
For these polynomials ([7], 447—449)
X,j = COS = = gint ST § D S )

o R 7 | v+1
Thus, again by putting fi(x)=x, we obtain from Theorem 13 the following
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Corollary 8. If

sin? 22 Y
v+ 1 v+ 1

i -
a® = cos ] o TR L D) e S

Py = v+ 1

then the linear order statistics {A,, S} is asymptotically &, +...+¢, (m=1,2,...)
distributed, where ,, ., ... are independent random variables having the same density

ey
Sunction — )1 —x2.
n

4.5. The simplest and most general method for constructing linear order sta-
tistics with a given limit distribution is probably the one based on one of the criterian
of Riemann-integrability.

The decomposition of the interval [0, 1] into disjoint subintervals realized by
the point of division ;

(29) O=x4<cxy<.cceX,=1

will be called a distinguished decomposition sequence, if the matrix (6) formed with
the numbers
(30) Pa =Xty (ol w3 ¥:21,25000)
is a stochastic 7-matrix.

Let y,; (j=1, ..., v) be an arbitrary point in the interval determinated by the
points of decomposition x,;_, and x,;.

The function f(x) defined and bounded in the interval [0, 1] is Riemann-
integrable if and only if the sequence

2; paftyg). (=1, 2..)
F=

converges for any distinguished decomposition sequence. The limit is then the
Riemann-integral of the function f(x) on the interval [0, 1].
Let the random variable 5, be defined by

P[‘q\ __'f‘{..vvj)] = Py (f =1, ..., \’).
Since together with f(x) the functions cos f(x) and sin f(x) are also Riemann-
integrable in the interval [0, 1], we infer by following word for word the second
statement of Theorem 11, that n,= f(5), v— =, where 5 is a random variable uni-
formly distributed in the interval [0, 1].
On the basis of Theorem 9 we have the following

Theorem 14. Let (29) be a distinguished decomposition sequence of the interval
[0, 1] and let S denote the stochastic T-matrix formed with the elements (30). Let
!5 be an arbitrary point in the interval determined by the points x,;_, and x,;.

If filx) (k=1,2,...) is a Riemann-integrable function in the interval [0, 1] and
the elements of the matrix A, are given by

Y =K = dion ¥ 1= 52 i

then the linear order statistics {A,, S} is asymptotically fi(ny)+...+f.(0) (m=1,2,...)
distributed, where n,, ns, ... are independent random variables uniformly distributed
in the interval [0, 1].
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If, in particular, the decomposition sequence is equistant, i.e. x‘.,-=%, then
by example | from 2.1 the matrix (6) built from the elements B is a stochastic

T-matrix, and so the decomposition sequence is distinguished. If, moreover, yu-:i,
then we obtain the following ¥

Corollary 9. If f(x) is a function Riemann-integrable in the interval [0, 1] and

1 J ;

then the linear statistics {Ay, S} is asymptotically f(n)+...+f(n,,) (m=1,2,...)
distributed, where n,, n,, ... are independent random variables, uniformly distributed
in the interval [0, 1].

By putting f(x)=x in Corollary 9, we obtain the following
Corollary 10. If

U=1,..,v; kv=12..)

I j
e R e
Py > aw v

then the linear order statistics {A,, S} is asymptotically n,+...4+n, (m=1,2,...)
distributed, where n,, 0., ... are independent random variables, uniformly distributed
in the interval [0, 1].

The corollary just formulated is a case of Wilcoxon statistics. Since n, has

: I A I ; . R
expectation ? and variance T M+ ... +n,, is asymptotically normally distributed

; . om ;
with expectation —- and variance

il
2 12°
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