On conformally flat generalised 2-recurrent spaces

by M. C. CHAKI and A. K. RAY (Calcutta)

Introduction. A non-flat Riemannian space whose curvature tensor R_{hijK} satisfies the relation

$$\nabla_m \nabla_l R_{hijK} = \beta_m \nabla_l R_{hijK} + a_{lm} R_{hijK}$$

where β_m and a_{lm} are not both zero and ∇ denotes the operator of covariant differentiation with respect to the metric of the space has been called elsewhere [1] a generalised 2-recurrent space and an n-space of this kind has been denoted by $G({}^2K_n)$. If $\beta_m=0$, the space reduces to what is known to be a 2-recurrent space as named by A. LICHNEROWICZ [2]. Considering conformally flat 2-recurrent spaces Roy Chowdhury [3] showed that the scalar curvature of such a space is necessarily zero. Later, A. H. Thompson [4] proved that all n-dimensional ($n \ge 3$) conformally flat 2-recurrent spaces with indefinite metric are recurrent and that every such space with definite metric is flat. In the present paper we consider conformally flat generalised 2-recurrent spaces with symmetric tensors of recurrence. In such a space of zero scalar curvature, canonical expressions have been given for the Ricci tensor and the recurrence tensor in terms of a real null vector field and a non-zero scalar field. The question whether such a space can have definite metric has been answered and the nature of the space in case of indefinite metric has been determined.

1. Conformally flat $G({}^{2}K_{n})$ $(n \ge 3)$ with symmetric recurrence tensor. Let us suppose that a $G({}^{2}K_{n})$ with symmetric tensor of recurrence a_{lm} is conformally flat. Then its curvature tensor is of the form

(1.1)
$$R_{hijK} = g_{hj}H_{iK} - g_{hK}H_{ij} + g_{iK}H_{hj} - g_{ij}H_{hK},$$

where

(1.2)
$$H_{ij} = -\frac{1}{n-2} \left[R_{ij} - \frac{R}{2(n-1)} g_{ij} \right]$$

and further [5]

$$\nabla_K H_{ij} = \nabla_j H_{iK}.$$

In consequence of (1) it follows from (1.2) that

$$\nabla_l \nabla_K H_{ij} = \beta_l \nabla_K H_{ij} + a_{Kl} H_{ij}.$$

Hence (1.3) gives

$$a_{Kl}H_{ij}=a_{jl}H_{iK}.$$

Transvecting (1.5) with g^{Kl} we get

$$\Theta H_{ij} = a_{jl} g^{Kl} H_{iK},$$

where $\Theta = g^{Kl}a_{Kl}$, whence 1)

(1.6)
$$\Theta R_{ij} = \frac{R}{2} \frac{n-2}{n-1} a_{ij} + \frac{R}{2} \frac{\Theta}{n-1} g_{ij}.$$

If $\Theta = 0$ it follows from (1.6) that R = 0 because n > 2 and $a_{ij} \neq 0$.

If $\Theta \neq 0$, then $R \neq 0$ for R = 0 would in this case imply $R_{ij} = 0$ which makes the space flat, contrary to assumption. We can therefore state the following theorem.

Theorem 1. In a conformally flat $G({}^{2}K_{n})$ with symmetric recurrence tensor. the scalar curvature and the scalar Θ are either both zero or both different from zero,

 Conformally flat G(²K_n) with symmetric recurrence tensor and zero scalar curvature.

In this case we suppose $R_{ij}\neq 0$ and R=0. Hence there exists a real vector field λ^i such that

$$R_{ii}\lambda^i\lambda^j=e$$
 $(e=\pm 1).$

Let $\mu_i \stackrel{\text{def}}{=} R_{ij} \lambda^j$. Then we have $\lambda^i \mu_i = e$.

1) Proof of (1.6): From the Bianchi identity we have

$$\nabla_m \nabla_l R_{hijK} + \nabla_m \nabla_j R_{hiKl} + \nabla_m \nabla_K R_{hilj} = 0$$
 or,
$$a_{lm} R_{hijK} + a_{jm} R_{hiKl} + a_{Km} R_{hilj} + \beta_m (\nabla_l R_{hijK} + \nabla_j R_{hiKl} + \nabla_K R_{hilj}) = 0$$
 or,
$$a_{lm} R_{hijK} + a_{jm} R_{hiKl} + a_{Km} R_{hilj} = 0 \text{ (using Bianchi's identity)}$$

or,
$$a_{lm} R_{ijK}^t + a_{jm} R_{iKl}^t + a_{Km} R_{ilj}^t = 0$$
.

Contracting t and I we get

$$a_{tm}R_{ijK}^t = a_{Km}R_{ij} - a_{im}R_{iK}$$

Transvecting with g^{ij} we get $a_{im}R^t_{\kappa}=a_{\kappa m}R-a_{jm}R^j_{\kappa}$ whence

$$a_{im}R_K^j = \frac{1}{2}Ra_{Km}.$$

Now from $\Theta H_{ij} = a_{jl} g^{Kl} H_{iK}$ we get using (1.2)

$$-\frac{1}{n-2} \Theta \left[R_{ij} - \frac{R}{2(n-1)} g_{ij} \right] = -\frac{1}{n-2} a_{ji} g^{Ki} \left[R_{iK} - \frac{R}{2(n-1)} g_{iK} \right]$$

or,

$$\begin{split} \Theta R_{ij} - \frac{R\Theta}{2(n-1)} \, g_{ij} &= \, a_{ji} \, R_i^l - \frac{R}{2(n-1)} \, a_{ji} = \, a_{lj} \, R_i^l - \frac{R}{2(n-1)} \, a_{ij} \quad (a_{ij} \text{ is symmetric}) \\ &= \frac{1}{2} \, R a_{ij} - \frac{R}{2(n-1)} \, a_{ij} \quad (\text{by (*)}) \\ &= \frac{R}{2} \, \frac{n-2}{n-1} \, a_{ij}. \end{split}$$

In consequence of (1.5) we have

$$R_{ij}a_{Kl}=R_{iK}a_{jl}$$
.

So

$$(2.1) R_{ij}a_{Kl}\lambda^K = \mu_i a_{jl}.$$

Contraction with λ^i gives

$$(2.2) ea_{il} = \mu_i a_{Kl} \lambda^K$$

Let

$$\varrho \stackrel{\text{def}}{=} a_{ii} \lambda^i \lambda^j$$
.

Then

$$\mu_j \varrho = e a_{jl} \lambda^l$$
,

i. e.:

$$e\mu_I = a_{KI}\lambda^K$$
.

Thus we have²) from (2.2)

$$(2.3) a_{jl} = \varrho \mu_j \mu_l.$$

Since $a_{il} \neq 0$, $\varrho \neq 0$. From (2.1) we get

$$R_{ij}\varrho\mu_K\mu_l\lambda^K=\mu_la_{jl}$$
.

Whence

$$(2.4) R_{ij} = e\mu_i\mu_j.$$

Since R=0, it follows from (2.4) that μ_i is a null vector field.

If the metric is definite it cannot contain a real null vector field. Hence the assumption that $R_{ij}\neq 0$ is false. We can therefore state the following theorems:

Theorem 2. In a conformally flat $G(^2K_n)$ with symmetric a_{lm} and zero scalar curvature, there exist a real null vector field μ_i and a non-zero scalar field ϱ such that the Ricci tensor R_{ij} and the recurrence tensor a_{ij} have the canonical forms:

$$R_{ij} = e\mu_i\mu_j (e = \pm 1)$$
 and $a_{ij} = \varrho\mu_i\mu_j$.

Theorem 3. A conformally flat $G(^2K_n)$ with symmetric recurrence tensor and zero scalar curvature cannot admit a definite metric.

Since
$$\nabla_K R_{ij} = \nabla_j R_{iK}$$
 and $R_{ij} = e\mu_i \mu_j$,

we get

Let $t_K = \lambda^i \nabla_K \mu_i$. Then transvecting (2.5) with $e \lambda^i \lambda^K$ we get

$$\lambda^K \nabla_K \mu_i = 2t_i - e \sigma \mu_i$$

where $\sigma = \lambda^m t_m = \lambda^m \lambda^n \nabla_m \mu_n$.

²⁾ Proof of (2.3): Since $ea_{jl} = \mu_j a_{Kl} \lambda^K$, $ea_{jl} \lambda^l = \mu_j a_{Kl} \lambda^K \lambda^l$ or, $ea_{jl} \lambda^l = \mu_j \varrho$, $a_{jl} \lambda^l = e\mu_j \varrho$. Hence $ea_{jl} = \mu_j e\mu_l \varrho = e \mu_j \mu_l$.

Again from (2.5)

$$\nabla_{K}\mu_{i} = e(\mu_{i}t_{K} + 2\mu_{K}t_{i}) - 2\sigma\mu_{i}\mu_{K}.$$

Put

$$p_i = t_i - e\sigma\mu_i$$
.

Then (2.7) can be expressed as

$$\nabla_{K}\mu_{i} = e(\mu_{i}t_{K} + 2p_{i}\mu_{K}).$$

Again from $\nabla_l \nabla_K R_{ij} = \beta_l \nabla_K R_{ij} + a_{Kl} R_{ij}$, we get

(2.9)
$$\beta_{l}(\mu_{j}\nabla_{K}\mu_{i} + \mu_{i}\nabla_{K}\mu_{j}) + \varrho\mu_{i}\mu_{j}\mu_{K}\mu_{l} = \mu_{i}\nabla_{l}\nabla_{K}\mu_{i} + \mu_{i}\nabla_{l}\nabla_{K}\mu_{i} + \nabla_{K}\mu_{i}\nabla_{l}\mu_{i} + \nabla_{l}\mu_{i}\nabla_{K}\mu_{i}.$$

Transvecting (2.9) with λ^i and λ^j we get

(2.10)
$$\beta_l(t_K\mu_j + e\nabla_K\mu_j) + e\varrho\mu_j\mu_K\mu_l = \mu_j\lambda^i\nabla_l\nabla_K\mu_i + e\nabla_l\nabla_K\mu_j + t_K\nabla_l\mu_j + t_l\nabla_K\mu_j$$
 and

(2.11)
$$2e\beta_l t_K + \varrho \mu_K \mu_l - 2t_K t_l = 2e\lambda^j \nabla_l \nabla_K \mu_j.$$
 Using (2.11) we get from (2.10)

$$(2.12) e\nabla_l \nabla_K \mu_i = e\beta_l \nabla_K \mu_i + \frac{1}{2} e\varrho \mu_i \mu_K \mu_l + e\mu_i t_K t_l - t_K \nabla_l \mu_i - t_l \nabla_K \mu_i.$$

Using (2.12) and (2.8) we have from (2.9) by straightforward calculations

$$(2.13) 8p_i p_j \mu_K \mu_l = 0.$$

Hence $p_i = 0$, i. e.,

$$t_i = e\sigma\mu_i$$
.

Therefore $\nabla_K \mu_i = \sigma \mu_i \mu_K$. From $R_{ij} = e \mu_i \mu_j$ we get $\nabla_K R_{ij} = \varphi_K R_{ij}$, where $\varphi_K = 2\sigma \mu_K$. From this we get

$$\nabla_l R_{hijK} = \varphi_l R_{hijK}.$$

If $\varphi_l=0$, the space becomes flat which is impossible by assumption. Hence $\varphi_l\neq 0$. This means that $\sigma\neq 0$. Thus incidentally we see that λ^i and μ^i introduced in this section must not satisfy the equation $\lambda^i\lambda^j\nabla_i\mu_i=0$.

We now state the following theorem:

Theorem 4. If there exists a conformally flat $G(^2K_n)$ with symmetric recurrence tensor and zero scalar curvature then the space is a recurrent space.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF CALCUTTA AND DEPARTMENT OF MATHEMATICS UNIVERSITY OF KALYANI

References

- A. K. RAY, On generalised 2-recurrent tensors in Riemannian spaces, Acad. Roy. Belg. Bull. Cl. Sci., 5° Serie, 1972—2, 220—228.
 A. LICHNEROWICZ, Courbure, nombres de Betti et espaces symétriques, Proc. Int. Congr. of
- Math. 2, (1952), 216-223.
- [3] A. N. Roy Chowdhury, Some theorems on recurrent spaces of second order, Bull. Acad, Polon Sci. Ser. Sci. Math. Astr. Phys. 15, (1967), 171—176.
 [4] A. H. Thompson, On conformally flat 2-recurrent Riemannian spaces, Quart. J. Math. Oxford, Ser. 2, 20 (1969), 505—510.
- [5] V. HLAVATÝ, Differential line geometry, Noordhoff, Gröningen, (1953) 477, 481.

(Received November 26, 1973.)