Investigation in the power sum theory IV

By S. DANCS and P. TURAN (Budapest)
To the sixtieth birthday of A. Rapesdk

1. In this and next two papers of this series we will discuss an oscillation theorem
referring to ordinary differential equations. Actually the method in title will be
concerned in papers IV. and V.; in the sixth paper the general oscillation theorem
will be proved based on the results of IV. and V. and has no direct connection
with the method. Paper VI. could not be included either into paper IV. or V. wit-
hout making it too long.

Let the real constants 4, a,, ..., a,_, be such that the zeros of the equation

(1.1) "+a, '+ ... +ag=0
are outside the strip
(1.2) Imz| = A
with a A=0. Then we assert the
Theorem 1. All y(1)#0 real solutions of the linear differential equations

(1.3) YO ta, Y V4. 4ay =
change sign in every real interval of length

nm

S

24
We assert that Theorem 1 is bestpossible for all n’s (which are necessarily even
n=2k). Let us consider namely the equation

(1.4)

=1k
(1.5) » [ ]yl*"(r) = 0.
v=0 1LV

Here the charecteristic equation is (1+4%* i.e. A=1 and the roots are i =+i
with multiplicity k. Hence the functions 7Ye*" (v=0,1, ..., k—1) and also 7" sin ¢
(v=20,1,..., k—1) are solutions of (1.5) and thus also the function

A I § ! .
¥ (f) = [I —?] [l —E] [I —W] sin f.
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But this function does not change sign for

nm nm
O=t=kn=—-=

Rl 7
indeed.

2. The proof of Theorem 1 is based on a modified form of the so called onesided
theorem referring to generalised powersums

L=

(2.1) g) =

j=1

b;z; v =0, integer

where b;’s are arbitrary fixed complex numbers and z;’s fixed complex numbers
satisfying

(2.2) min |z;| = 1
J
and also satisfying the argumentum restrictions
(2.3) x=larcz|=n (j=1,..,n)
; n ) 4 > .
with a 0-=:x§5 say. Let m=0 and integer. Then the onesided theorem in question*)
asserts the existence of integer v, and v, so that

(2.4) m+1 =y, v2§m+n[3+%]
and the inequalities
T n o
(2.5) Re g(v,) = |Re g(0)| [—Z_Tm)—]
and
2.6 REalsD B IR 40N [—"—]h
" 80 =~z IReEON | Z70m )

hold. The modified form refers to such g(v)’s where beside the normalisation (2.2)
and argument restriction (2.3) the “symmetry-condition” holds which means that
the z;-system is symmetric to the real axis i.e.

2.7) with z; also Z; occures among the z;'s
and
(2.8) coeffs. (Z;)* = coeffs. z}.

For such g(v) — which are real for integer v's — we have

Theorem 2. For all integer m=0 there are integer v, and v, so that
m+l=v, v -ﬁm+n[ b
T PR 2 2

*) P. TurAN, On an improvement of some new onesided theorems. Acra Math. Hung. 11.
(1960), 299—316.
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and the inequalities

g(v) = 3n 1g(0)| [m]

and

g(vs) = ——[g( 0)| [m]
hold.

First we shall deduce Theorem 1 from Theorem 2 and then we shall sketch
the proof of Theorem 2.

3. Let 2,, .... 2, be different complex numbers satisfying the inequalities
3.1 min Reo; = 0
I
(3.2) min [Imo;| = [ = 0.
J

Further the symmetry conditions S should be satisfied that with z; also &, occurs
among the ;’s and the numbers ¢; be such that

(3.3) &j e le
implies
(3.4) o =8,
Let further d=0 be so small that
dl T
3.5) =3
and we choose in Theorem 2
d
(3.6) m=0, zy=e"’ (j=1,..,n)
and
L !a v
(3?) g(\") — gl(v) — Z;. Cje" 4 X
f

(3.3)—(3.4) implies that the symmetry-restrictions (2.7)—(2.8) are satisfied;
owing to (3.1) the same holds for (2.2). As to (2.3) we have

d
arcz; = = lm-acj

i.e.
(3.8) x = 2

n

can be chosen. Then Theorem 2 gives the existence of integer v, and v, with

O<v, vw=n|3+

20’1]
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i.e.

dv dv nn
3: e el sl
(3.9 0 i - = 3d+ 37
so that

I
&alv) = 3, [Re £ (0)27°"

|
&i(v) =— = |Re g,(0)| 27",

But owing to (3.9) this means that putting

(3.10) G(t) = 3 ;e
j=1
we have £

max G()= ?1};- [Re G(0) 27"

an
0<x=3d+—
s 2l

min G = ——;; |Re G(0)|27-"

nn
O<xS3d+—
2

or with d -0

max G(1) = 3—ln |[Re G(0)/27"

0 et
EXSE 31

rl'lil:lmI G(t) = - 3% |[Re G(0)|27".

O=x=—
2l

If @ is an arbitrary real number, replacing ¢; in (3.10) by c;e~%¢ the symmetry
restriction (3.3)—(3.4) is not violated and we got the inequalities

max G(t) = 315|Re G(a)27-"

a=x=a+—
2l

(3.11)
min = G(1) = —3% |Re G(a)|27~".

asx=g+—
2

Let now y=»(t)#0 be an arbitrary solution of the equation (1.3) with property
(1.1)—(1.2). Then the a; coefficients in (1.1) can be changed so to aj’s that they
remain real, the zeros «; of

Z"+ay 12"+ ... +a; =0
are for any prescribed ¢=>0 outside the strip

Imz| = A—e¢
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and all simple. But then the solutions of the modified equation
v tap 0" V4. +aw =0, v(a) = y(a)

are of the form (3.10) and so (3.11) is with / = A —¢ applicable. Then trivial passage
to limit gives for arbitrary real a the inequalities

1 -n
max y() = —B?Iy(a)| 27

asxsa+—
24

; 1
e ilng |27 =n
min & y() = n ly(a)| 27",

asx=a+—
24

If y(a)#0 the proof of Theorem 1 is finished; if not then arbitraly close to a there
are a’ places with y(a") =0 and again the theorem follows.

4. So we have to prove Theorem 2. We shall need (see 1. c.p. 305—308) the

Lemma 1. Let F(z) = 1 +a,z+...+ayz" be an arbitrary polynomial with real
coefficients and with all zeros outside the angle

larcz| < = [O-cxéi;-].

Then there is a polynomial @(z) (with real coefficients) so that
4.1) F2)o(z) =1+ez+ez+ ...

is a polynomial of degree

21

and with nonnegative coefficients. Supposing in addition that all zeros of F(z) are
outside the disc |z|<1 we have also the estimation

(4.3 g 2,

We shall also state the following theorem of Norlund as

Lemma 2. Let w,, ..., w, pairwise different komplex numbers outside of a closed
rectifiable curve L and g(z) be analytical outside and on L with g(=)=0. Then defining
the (unique) polynomial L,(g) of degree =v—1 by

4.4 Ly(8):=w,=8W) j=12..,v

and writing it in the Newtonian form

4.5) L,(g) =do+dy(z—wy))+da(z—w)(z—wg) + ... +d,_1(z2—w) ... Z—w,_;)
the coefficients d; are given by

h _1 f g(w)dw
S 2mi f (w—w)(W—wp) ... (W—wj)

(4.6) d;
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5. Let m be an arbitrary integer =0, the z;’s satisfying (2.7), (2.2) and consider
the polynomial n,_,(z) defined by

(5.1 Kalty) =™ J=lid, oo
Writing
(5.2) Ry 1(2) = cP+cePz+ ... +cfP,2" 1

the ¢!V coefficients are real. We shall write n,_,(z) first in the form
(53) n,_1(2) =do+dy(z—2))+dp(z—2)(z—2)+... +dy_1(z2—2) ... 2—2,-1);
the connection of ¢/" and d; coefficients is obviously

) = o
ll -1 — “g-1
and for v=n-2

“l _d d\'+l Z zh+dr+2 2 2§ Zjy—

1=j=v+1 1=jy=<jasSv+2

n
m+n

; P h . 1
Hence Lemma 2 gives choosing as L the circe L,: ||-.’[=I—-i- = o the

representation
1

1
' 2mi Lnlfw"'”(w—zl)...

e =

(W-zvn){ W—2,42 15j;5v+1

zh+

(5.4)
[

w—z,,9(W—2,,4) 1=jyi<Js=v+2

z_u P }du

We may suppose without less of generality
(5.5 |22 = |ze] = ... = [z,

Then the absolute value of the expression in the curly bracket cannot exceed

l+[w+q 2044l +[w+ﬂ L

2y 40l —@ [Zy 42l —€ |zy43l—@
[ n—1 ] Zeal _Zossl |2l
_"'_l Izv+2i_g |Zv+s|—0 1zuI_Q
further
|2, = 2 < 14 0 __2m+n

lzl—e " |zl—e l—g = n
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we get from (5.4)
v+1l
|C“’I5 1 2m+n] [t pmEn
L n 1 n

e L b
b2

Using the value of ¢ we obtain the

=

Lemma 3. For the (real) ¢V coefficients the inequality

(5.6) 2 [C(I)| = [4'/— m+n]
v=0
holds.

6. We can now turns to the proof of Theorem 2. We may suppose without
loss of generality z,z, for u=v. We construct a sequence of auxiliary polynomials.
The first is the one in (5.1); we shall denote it by fi(z) let the second be

(6.1) filz) = 1——] 2 @z

f

which has owing to (2.7) only real coefficients. Owing to (2.3) we can apply Lemma 1
with
F(z) =fy(z), N =n.

Then we get, the polynomial

(6.2) £:2) = £o(De(2) = 1 +cfVz+ ...
with nonnegative coefficients of degree

<3(0fe]

so that
(6.4) eI,

Next let us consider the fourth one

(6.5) i@ =£: A +z+22+... +2" 1)2[4113.
The degree of f; is

m+n

] P o

n m
(6.6) =< 3[3+[;]]—1.
Further the inequality
6.7) c®=0

9D
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holds for all v’s and let us observe that owing to (6.2) and the nonnegativity of the
¢® coefficients for v = 0, 1, ..., n—1 even the inequality

(6.8) =2 [4 Vet ”]
holds.
7. The last two auxiliary polynomials with real coefficients will be
(7.1) £ = i@ +4(2) = Z P2
(7.2) fe(2) = i) —£1(2) = Z V7"

Owing to (6.6) their degree cannot exceed

™ 3o[])-

We assert further that for all v's
(7.4) c® =0 c¥=0;
it will be enough to show the first ones. Since fi(z) has a degree =n—1, (6.7)

clearly implies ¢!* =0 for v=n. But also for v = n—1 the assertion is true owing
to (6.8) and (5.6). Replacing further z by z; (j=1, ..., n) we get

2 oPzj = zy=~1,
v

owing to (5.1) and (6.5), (6.2), (6.1), i.e.
(7.5) et Tk

v
Quite analogously we get

Separiitr=all J=1iaam
v

Multiplying then by b; we get

ScPgm+v+1) = g(0)

(7.6)
Se®gm+v+1) = —g(0).

Owing to (7.3) we have
n n
m+l=m+l4v= m+—[3+[—]];
2 X

since owing to (2.7)—(2.8) the g(m+ v+ 1)’s are all real and we may suppose without
loss of generality
£(0) = [g(0),
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we get from (7.6) the inequalities

max g(v) = ’Zg{:ﬂ‘)
(7.7) §
: lg(0
ming(v) = ——Zg,%,

where the max resp. min refers to the integers of the interval

(7.8) m+l=vy= m+i [3+[£]].
2 x
8. In order to complete the proof of Theorem 2 we have to give upper bounds

for Xe!® and 3¢l®; it is enough to do it for the first one. [7.1], [6.5] and Lema 3 give

2c¢® =fi(D)+AM) =f1(D)+ 3 [P =
8.1) i

= fo(1)2n [4y’3 ’”*"] +|aye ”’:”] .

n
Using finally (6.2)—(6.4) we get
e = [8 Ve

which completes the proof.

m-+n
n

u(2u+ 1)

s

( Received February 13, 1974.)



