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A sum theorem for the covering dimension of normal spaces has been proved
in [1]. Also, in [5], K. NAGAMI obtains a sum theorem for the covering dimension
of paracompact Hausdorff spaces. Making use of these sum theorems, we establish
in the present note several sum theorems for the covering dimension of totally nor-
mal spaces as well as for that of hereditarily paracompact spaces. All spaces are
assumed to be normal and 7;.

1. Sum theorems for the covering dimension of totally normal spaces

We first give the definition of the covering dimension of a space.

A subset Y of a space X is said to be a separating set if X~ Y is not connected. If
H and K are disjoint subsets of X, and Y is a separating subset of X such that there
exists a relatively open-closed subset G of X~ Y with HSG and G K=0, then Y
is said to separate H and K.

The covering dimension of X, denoted by dim X, is =n if every finite open
covering of X can be refined by an open covering whose order is at most n+1. If
dim X=n and the statement dim X=n—1 is false, we say that dim X=n. If the
statement dim X=n is false for all n, we say that dim X=<. Also, dim 0 = —1.

We shall need the following theorems proved in [1] and in [5].

Theorem 1.1 [ENGELKING, 1]. If X is a normal space and {F,: a€ A} is a locally
finite closed covering of X such that dim F,=n for all a€ A, then dim X=n.

Theorem 1.2 [NAGAMI, 5]. If X is a totally normal space and YS X, then dim Y=
=dim X.

A family {A4,: a€ A} is said to be order locally finite [2] if there is a linear ordering
<" of the index set A such that for each z¢ A, the family {4,: f<a} is locally finite
at each point of A4,.

Obviously, every o-locally finite family is order locally finite but not con-
versely.

Theorem 1.3. Let ¥ be an locally order finite open covering of a totally normal
space X such that dim V=n for each VY. Then dim X=n.
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PrROOF. Let ¥={V,: 2€ A} where A is a linearly ordered index set such that
{Vy: p<a} is locally finite at each point of V, for each 2€A. Let F={F,: ac A}
where F,=V,~ U {V;: f<a} for each z€ A. In view of theorem 1.2 above, dim F,=n
for each 2€ A. Also, since ¥~ is order locally finite, it is easy to see that # is locally
finite. Thus # is a locally finite closed covering of X such that dim F,=n for each
o€ A. Hence dim X=n in view of theorem 1.1 above.

Corollary 1.1. If ¥ is a g-locally finite open covering of a totally normal space
X such that dim V=n for each V¢¥, then dim X=n,

Corollary 1.2. Let J={F,: ucA} be an order locally finite family of closed
subsets of a totally normal space X such that U{F,: a€ A} =X . If dim F,=n for
lach 2£ A, than dim X =n.

PrOOF. {F}: € A} is an locally order finite open covering of the totally normal
space X such that dim F?~=n for each a€ A, since F~SF, and dim F,=n for
each o. It follows that dim X is =n view of theorem 1.3 above.

Theorem 1.4. Let ¥~ be an order locally finite open covering of a totally normal

space X such that dim V=n for each VY. If frontier V is compact for each V¢V,
then dim X=n.

PrOOF. Let V¥ be fixed. Let H=V~ V. Since H is compact and X is regular,
there exist finitely many open sets {G;: i=1,2, ..., p} covering H such that each

i L r
G,S V* for some V*€¥. For each i=1, ..., p, let F;=G;NV and let F,=V~ | G,.
i=1

Then F={F;:i=0,1, ..., p} is a finite (and hence locally finite) closed covering of
V such that dim F;=n for each i. Hence dim V=n in view of theorem 1.1 and hence
dim X=n in view of theorem 1.3.

Corollary 1.3. If ¥ is a e-locally finite open covering of a totally normal space
X such that dim V=n for each V¢¥" and frontier V is compact for each Ve ¥, then
dim X=n.

Theorem L.5. If {G,: ac A} is a locally finite open covering of a totally normal
space X such that dim G,=n for each a¢ A, then dim X=n.

PRrOOF. Since X is normal, there exists a locally finite open covering {V,: 2€ A}
of X such that V,SG, for each 2€ A. Now, dim V,=n for each «€A in view of
theorem 1.2. Thus, {V,: 2€ A4} is a locally finite closed covering of X such that
dim V,=n for each «€ A. Hence dim X=n in view of theorem 1.1.

Theorem 1.6, Letr {G,: o€ A} be a normal open covering of a totally normal space
X. If dim G,=n for each ac A, then dim X =n.

PRrROOF. {G,: a€ A} is a normal covering, therefore in view of theorem 1.2 in
[3], {G,: 2€A} has a locally finite open refinement {V,: fc4}. Now, proceeding
as in the proof of theorem 1.5 above, it can easily be proved that dim X=n.

Added in Prof. The authors have recently shown that if {G.: « € A} be any open covering of
a hereditarily paracompact Hausdorfl space X such that dim G,=n for all &€ A (or dim G,=n
for all &€ A), then cim X=n. All theorems in sections 2 follow as corollaries of this result.



Sum theorems for the covering dimension 197

Corollary 1.4. Let {G,: 2€ A} be a g-locally finite open covering of a countably
paracompact, totally normal space X such that dim G,=n for each 2€ 4. Then
dim X=n.

Proof. Every o-locally finite open covering of a countably paracompact, nor-
mal space is a normal covering [4].

Corollary 1.5. Let {G,: o€ A} be a o-locally finite open covering of a totally
normal space X such that each G, is an F_-subset of X. If dim G,=n for each 2€ A4,
then dim X'=n.

ProoF. {G,: 2€ A} is a normal covering in view of theorem 1.2 in [4].

2. Sum theorems for the covering dimension of hereditarily paracompact spaces

In this section, we shall obtain some sum theorems for the covering dimension
of hereditarily paracompact spaces. We shall need the following theorem proved
in [5].

Theorem 2.1 [NaGawmi, 5). If {F,: a€ A} is a locally countable closed covering
of a paracompact space X such that dim F,=n for each o€ A, then dim X =n.

Every hereditarily paracompact space is totally normal and obviously para-
compact. (As a matter of fact, every paracompact, totally normal space is hered-
itarily paracompact.) Since we wish to make use of both theorems 1.2 and 2.1, we
shall consider spaces which are hereditarily paracompact.

Generalizing the notion of order locally finite families we introduce the notion
of order locally countable families.

A family {A4,: 2€ A} is said to be order locally countable if there exists a linear
ordering " <" of the index set A such that for each «¢ A, the family {4,: f<a} is
locally countable at each point of 4,.

Obviously, every o-locally countable family is order locally countable but not
conversely.

Theorem 2.2. Let % be an order locally countable open covering of a hereditarily
paracompact space X such that dim G =n for each G€%. Then dim X =n.

PROOF. Let ¥={G,: x€ A} where A is a linearly ordered index set such that
{Gy: p=a} is locally countable at each point of G, for each x€ A. For each «, let
A,=G,~U{G,: p=u}. Since A,SG, and dim G,=n, therefore, dim A, =n for each
:xﬁ/l in view of theorem 1.2. Obviously, {4,: € /!} is a closed covermg ot X. We
shall prove that {A4,: 2€ A} is locally countable. Let xcX. Since ¥ is a covering
of X, there exists 2€ A such that x€G,. Consider {G,: f<x}. ¥ being order locally
countable and x being a point of G,, there exists an open set U such that x< U and
U intersects at most countably many members of {G,: f<=a} and hence also at
most countably many members of {4,:f-=x}. Also, in view of the construction,
G,V Az=0 for all f=u. Thus UG, is a neighbourhood of x which intersects at
most countably many members of {4,: 2€ A}. {4,: 2€ A} is thus a locally countable
closed covering of the paracompact space X such that dim 4,=n for each =€ A.
Hence dim X=# in view of theorem 2.1.
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Corollary 2.1. If % is a countable open covering of a hereditarily para-
compact space X such that dim G=n for each G¢%, then dim X=n.

Corollary 2.2. If o ={A,: a€ A} is a order locally countable family of closed
subsets of a hereditarily paracompact space X such that U {A4): x€ A}=X and if
dim A,=n for each x€ A, then dim X=n.

Theorem 2.3. If % is an order locally countable open covering of a hereditarily
paracompact space X such that frontier G is compact for each G¢% and dim G=n
for each G€%, then dim X=n. '

ProoOF. Proceeding as in the proof of theorem 1.4, it can be proved that there
exists a finite and hence a locally countable closed covering of G for each Ge¢%
such that the covering dimension of each member of the covering is =n. Hence
dim G=n for each Ge%. It follows that dim X=n in view of theorem 2.2 above.

Corollary 2.3. If % is a o-locally countable open covering of a hereditarily
paracompact space X such that frontier G is compact for each G¢% and dim G=n
for each G€%, then dim X=n.

Theorem 2.4. Let 4 be a o-locally countable open covering of a hereditarily
paracompact space X such that each GE% is an F,-set and dim G=n for each G¢%.
Then dim X =n.

ProoF. Let ¥= lj %, where each %, is locally countable. Let %,={G,: 2€ A,}.
i=1

i
Since X is normal and each G, is an F,-set, therefore for each ac A, G,= U %, ;,
i=1
where each G,,; is an open set whose closure is contained in G,. Let #; ;= {G, ;:a€ A}

and let #'= |J U #, ;. Then # is a o-locally countable open covering of X such
i=1j=1
that dim H=n for each Hc#. Hence dim X=n in view of corollary 2.1.
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