Contributions to the theory of semimodular lattices

By G. SZASZ (Budapest)

1. Introduction. 1t is well-known that semimodularity was firstly introduced
only for lattices of finite length (G. BIRKHOFF, [1], p. 445). Birkhoff’s definition,
based on covering property of elements, was not suitable of course to be extended
directly for lattices of infinite length'). Some years later R. Croisot gave a defini-
tion of semimodularity in general, coinciding with the Birkhoff’s one in the case of
finite length. His definition was formulated in [2] as follows:

Definition 1. A lattice L is called semimodular if and only if to each triplet
a, b, xe¢ L. with the properties?®)

alb and a~b<=x-<a
there exists an element y such that
(1) a~b<y=>b and (x-y)—a=x

One sees at once that the elements @ and » do not take symmetric parts in this
definition, although they do in Birkhoff’s definition. But, as we show in Section 2
of this note, Croisot’s definition can be rewritten into a symmetric form. After having
proved the equivalence of the new definition to the original one we add some remarks
to this definition.

The subject of Section 3 is related to § 4 of [4]. Theorem 6 of that paper shows
that there exist complemented semimodular lattices in which no inner element has
a maximal or a minimal complement®). Now we deal with lattices satisfying the
lower covering condition and we prove a theorem on relative complements from
which we can derive, as a special case, the following counterpole of the result quoted
just now: In a complemented semimodular lattice each element of finite height
has both maximal and minimal complements. In addition, we show that every ele-
ment of a partition lattice has the same property.

2. On the definition of semimodularity. We rephrase the definition of semimodu-
larity as follows:

') For notations and terminology used without being explained in this note, we refer to [3].

*) alb means that the elements @ and b are incomparable.

%) We call the attention of the reader to the fact that the lattice discussed in that theorem is
not relatively complemented in general.
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Definition 2, A lattice L is called semimodular if and only if to each triplet
a, b, x¢ L with the properties
alp and a-b=x=a

there exists an element z such that

(2) a~b<z=b,
(3) (x—2)~a = x,
(4) (x—2)~b = 2§

In order to legitimate this definition we have to prove
Theorem 1. Definitions 1 and 2 are equivalent over the class of lattices.

Proor. Let C; (i=1, 2) denote the class of lattices that are semimodular in
the sense of Definition i. Then C, < C, obviously. Thus we have to verify the reversed
inclusion.

Let L be any lattice from the class C, and let a, b be any pair of incompar-
able elements of L. Further, let x denote any element of L such that a~b<=x=a.

In case of x=a we make the choice z=»b which meets the requirements (2)—(4)
trivially.

In case of x=a there exists an y€ L satisfying (1) by Definition 1. Choose

Then
b=z=y~b=y=>a~b,

verifying the inequalities in (2), and

XryEZEY,
implying
x\-y = X'l = x-—J—’.
whence
Xy = X2

From this equation we get (3) and (4) by direct calculation:

(X\-vZ)t—-a = (x-._«_}‘)-a =X
by (1), and
(Xr2)~b = (X Y)~b = 2

by (5). Hence, each lattice L contained in the class C, belongs to C,. Thus, Theorem 1
is proved.

Remark 1. In the French version of [3] we have pointed out that in case of a
modular lattice L the requirements in Definition | can be satisfied by choosing
y=>b. Actually, a lattice is modular if and only if (3) can be solved by z=b for each x
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satisfving the inequalities a~b<x=a; in fact, any non-modular lattice has a sub-
lattice S represented by the diagram

anb

in which (x—b)~a=a+x.
Remark 2. Moreover, if L is modular, then (3) and (4) are valid with any x and
z satisfying the inequalities

a~b=x=a and a~b=z=b,
respectively. In fact, these inequalities imply the equations
a-~z =a~b=x~b
whereby, using the modularity, we get
x=x-(a~b) = xo(z~a) = (X—2)~a,
z2 = z2(a~b) = z-(x~b) = (z2-x)~b.

3. Existence of minimal and maximal complements. For any elements u, v, a
with u=a=v let R:(a) denote the set of the relative complements of a in [u, v]. We
prove the following

Theorem 2. Let [u, v] be an interval, satisfving the lower covering condition, of
a lattice L. If a is an element of [u, v] such that the length of interval [u, a] is finite,
then the length of the partly ordered set R(a) is not greater than that of [u, al.

Corollary. Every element of finite height of a complemented semimodular lattice
has maximal as well as minimal complements.

ProoOF. Since the theorem is clearly true for the cases ¢=w and a=v, we may
restrict the discussion to the case when v=a=v.
Provided that the length of [u, a] is n (where n is finite), there exists a chain®)

(6) =y Ay e S By <=4

) x <y means that x is covered by y.
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between v and a. Let r denote any relative complement of a in [u, v]:

G=TF =, Gsl =7,
Form the chain

@) r=0Gpet SEQ ol S... =0y 1T =Gyt = 0.
We show that it is a maximal chain between r and v. Since

a=ag~@-r)=a,, (j=01,..,n—1)
and a; < a;., by (6), either

aj = aj+lﬂ-\(aj\-./r) < aj+1
or
aj 1 ~(ap—r) = a4,
In the former case
aj\_dr - a‘,+1~_a(aj~_«r} = aj-+1~_«r

by the lower covering condition. In the latter case a; = a;,, = a;—r whence

AjT = AT = ap—r, ie.

aj--_-—r —_ aj+l~_-r.
Summing up the two cases we obtain
@yt X @y ~r (j=0,1,..,n=1).

This means that the chain in (7) is a maximal one and its length is at most ». It fol-
lows ([3], p. 104) that the length of the interval [r, v] for any relative complement r
of a in [u, v] cannot be greater than n. The length of R} (a) is, a fortiori, at most n.
Thus the theorem is proved.

Finally we prove

Theorem 3. Every element of a partition lattice has both minimal and maximal
complements.

ProoF. The customary proof of complementarity of partition lattices (see, e.g.,
[3], p. 148) proceeds, as is well-known, by giving effectively a complement to each
element. It is easily seen that this complement is a minimal one. Thus existence of
maximal complements is only to be shown.

Let A be an arbitrary element of a partition lattice P. In order to give a maximal
complement M of A we begin by selecting one element from each A-class; the set
of all selected elements will form a M-class. From the remaining elements of each
A-class we select an element again; they will form another M-class. Then we con-
tinue constructing the M-classes in the same way (after we have selected all elements
of an A-class, it will be left out of consideration at the construction of further
M-classes). Clearly, M is a complement of 4. Let C be any element of P greater
than M. Then at least one of the C-classes is the set union of two or more M-classes
and, therefore, it contains at least two elements belonging to the same A-class.
Hence A4 ~C cannot be equal to the least element, formed by one-element classes,
of P.
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