On Subobjects, Quotients, Kernels, Cokernels
in a Partially Ordered Category

By ROBERT T. VESCAN (Iasi)

1. Introduction. Preliminaries. Following MAc LANE [1] we call a category #
a partially ordered category, if each set Rel (4, B) of morphisms f: A - B satisfies
the following requirements:

(I-a) To each f: A—~B there is a unique f*: B—~A with
rfer=r=4*, (f*=g*r*

(I-b) Each Rel (4, B) is a modular lattice under a partial order relation “c™

such that for g, f: A—B, g f implies g* Cf*, ghcfh.

(Il-a) hh*cf*fU1 implies (fMg)h>fh(gh.

(I1-b) Ah* o f#f11 implies ( fUg)hcfhlgh.

(Il-c) f, g€Rel (A4, B) implies f*gNl ,cf*fcf*gUl,.

(II-d) gcf, g*¥egNl=f*fN1, ge*Ul=ff*U1 implies g=f.

(ITI-a) For each pair of objects 4, B there exist N(A4, B), P(A, B) in Rel (4, B)
such that feRel (4, B) implies Ncfc P.

(IT1-b) N(C, B), P(A, C)=N(D, B)P(A, D), NN=N, PP=P.

(IlI-c) NPN=N, PNP=P.

These axioms are self-dual in the lattice sense.

They are valid in the standard model .#, which is the category of all (left)
modules A4, B, ... over a fixed ring and of morphisms all submodules of the direct
sum 4@ B (these morphisms are called *“aditive relations™ in [1] and [2], “Kor-
respondenzen™ in [5], “*Correspondences™ in [9], “homomorphic relations™ in [8],
“linear relations™ in [4]).

In [5] D. PuppPE has defined a relation from the object A to the object B of an
abelian category .2 as a subobject of 4% B and has given (§ 2 in [5]) a construction
of the category J'(.2/) of relations over /; (/) satisfies all axioms of S. Mac
Lane (§6.10 and §9 in [5]).

We mention that, from a different point of view, P. HIiLTON has described the
construction of the category of relations based on an abelian category by means of a
fractional calculus ([9] and [10]).

A partially ordered category # is a particular *“category with involution™;
categories with involution have been firstly defined by Puppe ([5], § 1.3) and have been
called *‘categories of relations™ by H.-B. BRINKMANN ([6] and [7]). Indeed, if in
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the first group of axioms given by Mac Lane we cancel the equality f=/f*fand we
weaken the assertion that each Rel (4, B) is a modular lattice by assuming merely
that Rel (4, B) is partially ordered, then we obtain just the definition of a category
with involution.

The axioms I, II, 111 from the definition of a partially ordered category #
suffice to prove a number of basic properties valid for homomorphic relations or
relations in an abelian category, but do not characterize the relations in an abelian
category: in [5] “Beispiel A" from § 7 is a category with involution ¥ which sa-
tisfies axioms I, 11, 111, but one could never endow the subcategory of “maps™ (“‘eigent-
liche Morphismen™ corresponding to usual maps or homomorphisms, defined by
the conditions f*/>1, ff*<1) with a structure of pre-additive category!).

Finding all this, D. PuppE has imposed ([5]) a set of other axioms on a cat-
egory with involution which are sufficient conditions that the subcategory of “maps”™
be abelian and are necessarily satisfied by relations in an abelian category =7. The
axioms due to D. Puppe, imply all axioms from [1] and are clearly more restrictive
than the latter (we must except the condition of modularity for the lattice Rel (A4, B)
from I-b).

Herc)e, we take an other point of view. Without requiring any other axiom, we
remain within the frame of conditions I, II, III imposed on # by Mac Lane and we
show that # can be embedded in a category with involution # in which every “map”
of # has a kernel and a cokernel. Our immediate aim is to show that the seemingly
peculiar definitions of subobjects, quotients, kernels in # (due to Mac Lane) amounts
in # to the usual definitions with monomorphisms, epimorphisms and, respectively,
projective limits; so, we are not concerned only with the question of the existence
of kernels and cokernels for maps of #, we give in Theorems 2 and 3 a general
characterization of the “kernel’” and the “cokernel” (“kernel’ in the sense of [1]) of
an arbitrary morphism of 4 (not necessarily of a map).

It is known that in # the symmetric idempotents u€Rel (4, A), u=u* =uu,
form a sublattice which we denote by Rel (4, 4); all sc 1, and ¢ 1, are symmetric
idempotents, called subobjects and quotients of A, respectively.

We recall also that for each object 4 there is a lattice isomorphism between
the lattice of subobjects s 1, and that of quotients ¢ > 1, given by ¢ (s)=1UsO*,
Y(g)=1Ng0, @~ '=y: O(A,B) is defined by O(A, B)=N(B, B)P(A, B)=
=N(A, B)P(A, A). S. Mac Lane introduces for f: A—-B, Def f=f*fN1,, Kerf=
=y (f*fU1) and shows that Ker f=17f* Nf. We set f¥fJ1=Coimf and Im f=
=Def f* =ff* 1, and introduce also Coker f=¢(Im f) so that Coker f=1,UfPf*
(see also [3]).

2. Definition. We define the category # associated to a partially ordered cat-
egory # by <) s "

a) Ob#cOb #; for each ucRel (4, A), u=u,c0b #; the new objects are
but the symmetric idempotent morphisms of 4. A

b) For A, BEOb 4, Hom 3 (4, B)=Rel (A, B); for BEOb # and ucRel (4, A),
Hom ; (uy, By=Hom (u,, B)={f: A~B|fu=f}; for AcOb# and vefm(.&, B),
Hom (A4, vy)=Hom (4, vy)= {g: A=Blvg=g)}: Hom ;(u,, vg)=Hom (u,, vg)=
={f: A~ Blfu=vf=f).

3.
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¢) The composition of morphisms in # is the same as in #; we are allowed to
state this because, if f€Rel (4, B) and gcHom (B, uc), then gfeHom (A4, uc)
(ug=g=ugf=gf), if feHom (u,, B) and g¢cRel (B, C), then gf€¢Hom (u,, C)
(fu=f=gfu=gf), if feHom (u,, B) and g€ Hom (B, uc), then gf€¢ Hom (u,, uc), if
f€Hom (A4, ug) and g€ Hom (ug, C), then gfcRel (A4, C).

Remarks. 1. Denote by Codef f=Coim f*=/ff*U1y; f€¢ Hom (u,, B) ifand only

if Def fcucCoim f; f€eHom (4, vg) if and only if Im fcvcCodef f.
Indeed, according to MAc LANE [1] fu=f if and only if f*fN 1 ,cucf*fUl,.

2. The identity morphism in Hom (u,, u,) is just u=u, from Rel (4, A).

3. One can easily check the validity of axioms I for #. For example,
f€Hom (u,, B) implies fu=f i.e. uf*=f* and thus f*c€Hom (B, u,). If f, g€
€Hom (u4, B), then f(g€Hom (u,, B): the necessary and sufficient condition (given
in [1]) for the distributive law (fg)h=fh(\gh, namely hh*cCf*fJlgz, can be
applied in (fNg)u, as uu* =uc Coim f; then we have (fNg)u=fulgu=fg. Simi-
larly, (fUgQu=fuJgu=fUg, as uu*Of*f1,.

4. If we consider for each couple 4, BEOb # only those morphisms f: 4 B
for which we have f*f>1, and ff* 1y, we obtain two subcategories #, and %,,
respectively. The morphisms of # which satisfy simultaneously both inequalities
form the subcategory M (#) of “maps™ in 4.

5. Corresponding to the above subcategories of #, we have the subcategories

#,, and &, and M (%) of Z:
Hom;l(A, B) = Homjl(A, B), Homia(A, B)= Homy’(A, B),
Homg (u,, B) = {f:u, — B, f*f>1, =u},
l-lom_il(A, v,) = {g:4 - vy, g*g>D1},
Hom;l(ul', vy) = {fiu, = vy, f*f>u},
Homg—z(uA.B) = {fiu, - B, ff*cl,},
Homés(A_. vy) = {g:4 - v,, gg*Cu},
Homjz(ud, vg) = {g:u, —~ vy, gg* Cuv}.
Clearly Z is a full subcategory of # and M () is a full subcategory of M ().
3. Theorems.

Theorem 1. If sc 1, isa subobject of A€Ob A, then the morphism sc Hom (s, A)
is @ monomorphism in AB. If go 1, is a quotient of AcOb A, then the morphism
gcHom (4, q,) is an epimorphism in A.

PROOF. It is clear that s¢ Hom (s, 4). If sg=sh for g, h¢ Hom (X, s,), we must

have also sg=g and sh=h, so it follows obviously g=h.

Similarly g¢ Hom (4, ¢,) and from gg=hq, for g, h¢ Hom (g, X) it follows
g=h=gq=hq. s

For f: A—B let Ker f=1,1\f* N(B, B)f be an object of the category # and
i=1,Nf*N(B, B)f a morphism (from Kerf to A) in %.
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Theorem 2. Ker f and i have the following properties:

(a) For e=(ff*'J15)0O(A, B) we have fi=ei.

(@) ImicKerf. !

(b) For each XcOb # and gc Hom (X, A) with Im g Ker f (that is gg¥(1,C
c1,Nf*Nf), there exists a unique morphism hé Hom (X, Ker f), such that ih=g.

¥
o s = v v 5

e=(ffruip)oAs)
Fig. 1

(c) If YEOb# and jeHom (Y, A) have the properties:

[a’] ImjcKerf;

[b] ¥YX€Ob A, VgeHom (X, A) with Im g Ker f, 3 a unique h¢ Hom (X, Y)
such that jh=g:
then there exists a unique isomorphism © such that the following diagram is com-
mutative

Ker f
>
¥ 4
/
e/ [
/
/
’/
Y 5 =" 4

Fig. 2

(d) Im gcKer f=fg=eg. In the subcategory ;52, e=0(A, B) and the opposite

implication also holds, i.e. fg=eg<Im g Ker f which shows (see (b)) that in A,
(Ker f, i) is a projective limit of the pair ( f, O(A, A)).

ProOF. (a) Let us show firstly that O(A, B)(1,\f* Nf)cf. For Vf: A-B,
Cc0Ob 2, the following equalities can be checked by calculation:

Ker (N(B, C)f) = Def (N(B, C)f) = Ker f:
Ker (P(B, C)f) = Def(P(B, C)f)=Def 1.
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Hence we may write
Def [N (B, A)f(1,f*Nf)] = Ker [ f(1,11/* Nf)]:

Ker [f(1,Nf*N)] = (1L, Of* N+ NF(L,Nf*Nf)N1,4 D
D (LNf*NAY(LNf*NAOANSf* NN, = 1,0 f*Nf = Def (1,0 1*Nf).
If f¢Rel (A, B) and g<Rel (4, B"), then
Def f — Defg = O(B,C)f < O(B’,C)g, VCecObA.

Indeed, f*/M1,cg*gl1, implies (f*/N1,)UO0%*(4, A)c(g*gMN1,)JO*(A4, A):
constructing the dual of the equality N(B, A)g=(g*glU1,N0O(A, A), for Yge
€Rel (A4, B), given in [1], we obtain (f*fN1,)U0O*(4, A)=P(B, A)f; so we have
P(B, A)fcP(B’, A)g; it follows N(A4, C)P(B, A)f=N(A, C)P(B’, A)g=0(B, C)f=
SO, ).

Thus Def (1,7 f* Nf)c Def [N(B, A)f(1,Nf* Nf)] implies

O(4, B)(1,[\f*Nf) < O(4, B)N(B, A)f(1,\f*Nf) =
= N(B, B)f(1,Nf*Nf) < 1 f(f*fN1y = 1.

(The inclusion Ker fcDef f has been proved in [1].)
A theorem due to S. Mac LANE [1] says that gch<(Codef h)g=h(Def g);
then O(A, B)(1,\f* Nf)cf is equivalent to

(fr=Ulp)O(4, B)(1,Mf*Nf) = fDef [O(4, B)(1,Mf* Nf)I;

as Def[0(4, B)(1,Nf*Nf)]=Ker [P(A4, BY(1,Nf*Nf)]=Def (1,Nf*Nf)=1,N
M f* Nf we have just ei=fi.

@) Im(1,Nf*Nf)=1,Nf* Nf=Ker f.

(b) Since Im g=Def g*cKerf=icCoimg*, we have g*i=g*eoig=g, so
that g€ Hom (X, Ker f): we can then consider /1=g. Suppose that #"¢ Hom (X, Ker f),
that is ih"=H", and that /4" satisfies also the condition of commutativity ih"=g. Then
we obtain necessarily 4’ =g.

(¢) ImjcKerf implies Defj* CicCoimj*, so that j*i=j*<ij=j; it fo-
lows that jeHom (¥, Kerf). From ImjcKerf we obtain also, using (b), that
there exists a unique morphism A, € Hom (Y, Ker /) such that ik, =/, namely just
hl =j.

Applying [b] to X=Kerf and g=i (Imi=Ker /), we have that there exists
a unique h,€ Hom (Ker f, Y) with jh,=i. Let us show that this /, is an isomorphism.

The two conclusions obtained above for Ah,=j and h,, imply hh€
€ Hom (Ker f, Kerf), hoiyeHom (Y, Y) and

i(hyhy) = (ih)hy = jhy = i, j(hohy) = (Jho)hy = ihy = j.

According to (b) for X=Kerf and g=i, there exists a unique /h4¢
€Hom (Ker f, Kerf) which satisfies ih,=i, take namely /;=i; by Remark 2
f_:lx,,,-, so that hh, coincides with Iy, .. In the same way, if we apply
[p] to X=Y and g=j (ImjcKerf), we have that there exists a unique
hyeHom (Y, Y) which satisfies jh,=j, precisely hy=1,€Hom (Y, Y); it follows then
hohy=1y.

besides,
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We can now conclude that ;€ Hom (Ker £, Y) is an isomorphism with h;'=
=h1 =j.
(d) Im gcKer feogg*N1,cl,Nf*Nf=0(4, B)(gg*MN1,)C
cO(4, B)(1,Nf* Nf)cf.
m=0(A4, B)(gg*1,)cf implies (Codef f)m=f(Def m), that is

(ff*Ulp)O(A4, B)(gg*MN1,) = f(Def m).
Def m = Def [O(4, B)(gg*M1,)] = Ker [P(4, B)(gg*MN1,)] = Def (gg*M1,) =

=gg*MNl, and (gg*MNl,g = (Img)g = g.

Then it follows immediately

(ff*U1p)0(4, B)(gg* N1, )g = f(gg*N1,)g < eg = fz.

If ff*cly, e=130(4,B)=0(A,B) and from O(A, B)g=fg¢ we have
O(A, B)gg*=/gg*. Since gg*¥cl, O(A, B)gg* —O(A, B) and fgg*cCf, so that
feg* —O(A, B)(\f=N(B, B)f (the last equality proved in [1]); thus N(B, B)fgg*C
CN(B, B)f, which implies Ker (fzg*)cKer(N(B, B)f). As Ker(fgg*)=
=Ker [0(4, B)gg*]=Def (gg*)=gg* and Ker (N(B, B)f)=Ker f, we have in fact
gg*CKer f<Im gcKer f.

Thus in #,, the inclusion Im gcKer f is quivalent to fg=0(A, B)g; then
(a”) and (b) become: fi=0(A, B)i and for each g¢ Hom (X, A) with fg=0(A, B)g,
there exists a unique #€ Hom (X, Ker f) such that ih= g, which is just the necessary
and sufficient condition for (Ker £, i) to be a projective limit of the pair ( f, O(4, B))
(cf. [11], ch. 2.2 and ch. 3.1).

For f: A—~B we consider Cokerf=1,UfP(A, A)f* as an object of # and

p=13UfP(A, A)f* as a morphism from B to Cokerfin 4. Then, one can prove

Theorem 3. (a) For t=0(A, B)(f¥f1,) we have pt=pf.

(@) Coker f Coim p.

(b) YX€Ob # and gcHom (B, X') with Coker fcCoim g (that is 13\ UfPf*C
cg*gUly), there exists a unique morphism hé Hom (Coker f, X) such that hp=g

f \
= 8 = Loke
t=0a® (f*f n 1) P=lyv fP¥ ¢

Fig. 3
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(¢c) If YeOb # and réHom (B, Y) have the properties:

[a’] Coker fcCoim r.

[b] If XcOb# and gcHom (B, X) with CokerfcCoimg, 3 a unique
heHom (Y, X) such that hr=g;
then there exists a unique isomorphism @ ¢cHom (Y, Coker f) such that Or=p

(d) Coker fcCoim g=gf=gt. In the subcategory #,, t=0(A, B) and gf=
=gt<>Coker fCoim g, so that (Coker f, p) is the inductive limit of ( f, O(A, B)).

Corollary. For an arbitrary map f: A—~B from M(#), the pair (f, O(4, B))
has a kernel and a cokernel in M ().

PROOF. O(A, B)isamapin#, O(A4, B)c Homy 4, (A4, B),as 0% (A, B)O(A4, B)=
=P(A, A)D1,, O(A, B)O*(A, B)=N(B, B)C 1. Needless to say that fand O(4, B)
are maps in 4, too.

According to Theorem 2, i=1,f* Nf: (Ker f=i,)—~A is a kernel of the pair
(/s O(A, B)) in #,; we are allowed to state the same fact in M (%), since not only
ii*=icl,, but also i*i=iD>l =i and thus /icHom (Kerf, A) is a map

in 4.

According to Theorem 3, p=15(1fNf*: A—~(Coker f=pj) is a cokernel of the
pair ( f, O(A, B)) in #,; we are allowed to assert the same thing in M (%), since
p¥p=p>1,, but also pp* =PC 1 orer s =P and thus peHom = (A4, Cokerf) is a

map in #.

Ker f M (#)

Theorem 4. The category M is equivalent to M.

PrROOF. We define a functor F: .#—.# by F(A)=A for a module 4 and F(R)=R
for a linear relation R (submodule in a direct sum of modules RE A& B). It is clear
that the map induced by F from Rel (4, B) to Hom ; (4, B)=Rel (A, B) is the

identity mapping. Moreover, each object XcOb.# is isomorphic to an object
F(A), AcODb .#; indeed, X is either a module 4 = F(A), or a symmetric idempotent
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R : Def R
Ech—-RA with 7: Def R —~ Ker g G20
onical projection, is an isomorphism in .#: R,© A& A symmetric idempotent sub-
module implies R= |J (CXC), so that R(it*)=it*, (ti*)R=ti*, (it*)(ti*)=
_Def R
05 Ker R
=R=1x and (ti*)(it*)=lpe r/Ker R -

R,SA@ A: in the second situation, it*:
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