Ideal theory in the semiring Z^+

By PAUL J. ALLEN and LOUIS DALE (Alabama)

It is well known that the ring of integers Z is a principal ideal ring and that Z is Noetherian. It is equally well known that the semiring (the definitions and results appearing in ALLEN [1] and [2] will be used throughout this paper) of nonnegative integers Z^+ is not a principal ideal semiring. It is generally assumed without question that Z^+ is Noetherian; however, a proof has not been presented in the semiring literature, and prior to this paper, the ideals in Z^+ have not been classified. It will be shown that there is only one basic type of ideal in Z^+ and that all ideals in Z⁺ are related to this basic type in a natural way. Consequently, it will be an easy matter to classify ideals in Z^+ and present a proof that Z^+ is a Noetherian semiring. From these results, the discovery is made that Z^+ is an "almost principal" ideal semiring

When $n \in \mathbb{Z}^+$, the notation T_n will be used to denote $\{t \in \mathbb{Z}^+ | t \ge n\} \cup \{0\}$. The following are elementary facts concerning T_n .

Theorem 1. If $n \in \mathbb{Z}^+$, then T_n is an ideal in \mathbb{Z}^+ such that

- 1. $T_0 = T_1 = Z^+$, 2. If $1 \le n < m$, then $T_m \subset T_n$ and $T_m \ne T_n$, 3. $T_n \cup T_m = T_k$, where $k = \min\{n, m\}$, 4. $T_n \cap T_m = T_q$, where $q = \max\{n, m\}$, and 5. $\bigcap \{T_i | i \in Z^+\} = \{0\}$.

PROOF. Let $a \in T_n$ and $b \in T_n$. Since $a \ge n$ and $b \ge n$, it follows that $a + b \ge 2n \ge n$. Moreover, if $k \in \mathbb{Z}^+$, where $k \neq 0$, then $ka \geq kn \geq n$. Therefore, $a+b \in T_n$ and $ka \in T_n$ and it is clear that T_n is an ideal in Z^+ . The proofs of properties (1) through (5) are straightforward and will be omitted.

When $a \in \mathbb{Z}^+$ and $b \in \mathbb{Z}^+$, the notation S(a, b) will be used to denote the set $\{t\in Z^+|a\leq t\leq b\}.$

Theorem 2. If n > 1, then S(n, 2n) is a finite basis for T_n .

PROOF. Let $p \in T_n$. If $p \in S(n, 2n)$ or p = cn for some $c \in \mathbb{Z}^+$, then p is generated by S(n, 2n). Let p > 2n and $p \ne cn$ for any $c \in \mathbb{Z}^+$. There exists a $k \ge 2$ such that kn < n. However, this guarantees the existence of an <math>s < n such that kn + s = p, and it follows that $n+s \in S(n, 2n)$. Therefore, p=kn+s=(k-1)n+n+s, where $n \in S(n, 2n)$ and $(n+s) \in S(n, 2n)$, and it follows that S(n, 2n) is a basis for T_n .

Theorem 3. Z^+ satisfies the ascending chain condition on T_n -ideals.

PROOF. Let $\{T_{n_{\alpha}}\}$ be an ascending chain of T_n -ideals in Z^+ . It follows from Theorem 1 that $\{n_{\alpha}\}$ is a nonincreasing sequence of positive integers. Since any nonincreasing sequence of positive integers is finite there exists $\mu \in Z^+$ such that $n_i = n_{\mu}$ for each $i \ge \mu$. Therefore $T_{n_i} = T_{n_{\mu}}$ for each $i \ge \mu$ and Z^+ satisfies the ascending chain condition on T_n -ideals.

The following lemmas will be essential in the characterization of all ideals in Z^+ . They also give some methods by which one can determine if an ideal in Z^+ contains a T_n -ideal.

Lemma 4. Let I be an ideal in Z^+ . If $a \in I$, $m \in Z^+$, where $m \neq 0$, and $S(ma, (m+1)a) \subset I$, then there exists an $n \in Z^+$ such that $T_n \subset I$.

PROOF. Suppose $p \in Z^+$, p > (m+1)a and $p \neq ca$ for $c \in Z^+$. Since there exists $k \geq m+1$ such that ka , one has <math>ka+s=p for some s < a. Clearly s < a implies that $ma+s \in S(ma, (m+1)a) \subset I$. Therefore, $p=ka+s=(k-m)a+ma+s \in I$. Consequently, $T_{ma} \subset I$ and the lemma follows.

Lemma 5. Let I be an ideal in Z^+ . If there exists an $a \in I$ such that $a+1 \in I$, then there exists an n such that $T_n \subset I$.

PROOF. If I is a T_n -ideal, the lemma is obvious. Suppose I is not a T_n -ideal and a is the least element in I such that $a+1 \in I$. Since I is an ideal, a series of simple calculations show that the following elements belong to I:

$$a, a+1$$
 $2a, 2a+1, 2a+2$
 $3a, 3a+1, 3a+2, 3a+3$
......
 $aa, aa+1, aa+2, aa+3, ..., aa+a = a(a+1).$

The last row of elements is $S(a^2, (a+1)a)$ and in view of Lemma 4, there exists an $n \in \mathbb{Z}^+$ such that $T_n \subset I$.

Lemma 6. Let $a \in Z^+$ and $b \in Z^+$ where $a \neq 0$ and $b \neq 0$. If d is the greatest common divisor of a and b, then there exists $s \in Z^+$ and $t \in Z^+$ such that sa = tb + d or tb = sa + d.

PROOF. From elementary number theory, it is well known that d=s'a+t'b for some integers s' and t'. Since $0 \le d \le a$, $0 \le d \le b$ and both a and b are positive, it follows that $s' \le 0$ and $t' \ge 0$, or $s' \ge 0$ and $t' \le 0$. If perchance $s' \le 0$ and $t' \ge 0$, then tb=sa+d where $0 \le t'=t$ and $0 \le -s'=s$. On the other hand, if $s' \ge 0$ and $t' \le 0$, then sa=tb+d where $0 \le s'=s$ and $0 \le -t'=t$, and the conclusions follows.

The above lemma is necessary for the following:

Lemma 7. Let I be an ideal in Z^+ , $a \in I$ and $b \in I$. If a and b are relatively prime, then there exists an n such that $T_n \subset I$.

PROOF. Since 1 is the greatest common divisor of a and b, the above lemma guarantees the existence of $s \in Z^+$ and $t \in Z^+$ such that sa = tb + 1 or tb = sa + 1. Since I is an ideal it is clear that $sa \in I$ and $tb \in I$. Consequently, $sa+1 \in I$ or $tb+1 \in I$ and the lemma follows from Lemma 5.

It is easy to see that for $m \neq n$, T_m and T_n differ by at most a finite number of elements. Since $Z^+ = T_1$, it follows that Z^+ differs from a T_n -ideal by at most a finite number of elements. Consequently, if I is an ideal in Z^+ containing a T_n -ideal, then $T_n \subset I \subset Z^+$ and it follows that Z^+ and I differ by at most a finite number of elements. It will be shown that an ideal I in Z^+ not containing a T_n -ideal differs from the multiples of some positive integer d>1 by at most a finite number of elements. Consequently, if I is an ideal in Z^+ not containing a T_n -ideal, then there exist $m \in \mathbb{Z}^+$ and $d \in \mathbb{Z}^+$, where d > 1, such that $dT_m \subset I \subset (d)$.

In view of the above remarks, the ideals in Z^+ are classified according to the following definition.

Definition 8. An ideal I in Z^+ will be called a T-ideal if $T_k \subset I$ for some $k \in Z^+$. All other ideals in Z^+ will be called *M-ideals*.

It is clear that Z^+ is a T-ideal and $\{0\}$ is an M-ideal. The following theorem gives a characterization of T-ideals in Z^+ and will be used to show that Z^+ is Noetherian.

Theorem 9. An ideal I in Z⁺ is a T-ideal if and only if I has a finite basis and $I = K \cup T_k$ where T_k is the maximal T_n -ideal contained in I and $K = \{t \in I \mid 0 < t < k\}$.

PROOF. Suppose I is a T-ideal and $T_n \subset I$. Let $S = \{n \in \mathbb{Z}^+ | T_n \subset I\}$. It is clear that S is a non-empty subset of Z^+ and by the Well-Ordering Principle, S contains a least element, say k. By Theorem 1, $T_n \subset T_k$ for each $n \in S$ and it is clear that T_k is the maximal T_n -ideal contained in I. Letting $K = \{t \in I | 0 < t < k\}$ one has $I = K \cup T_k$. According to Theorem 2, S(k, 2k) is a finite basis for T_k . Since K is a finite set, $S(k, 2k) \cup K$ is a finite basis for I. The converse of the theorem is obvious.

Theorem 10. If $n \in \mathbb{Z}^+$ and $d \in \mathbb{Z}^+$, then dT_n is an ideal in \mathbb{Z}^+ such that

```
1. dT_1=(d) and dT_n=T_n if and only if d=1,
```

2. $dT_n = \{0\}$ if and only if d = 0,

3. If m < k, then $dT_k \subset dT_m$,

4. $dT_m \cup dT_k = dT_p$, where $p = \min\{m, k\}$, 5. $dT_m \cap dT_k = dT_q$, where $q = \max\{m, k\}$, and

6. $\cap \{dT_n | n \in Z^+\} = \{0\}.$

PROOF. Suppose $x \in dT_n$ and $y \in dT_n$. Then there exist $k \ge n$ and $q \ge n$ such that x=kd and y=qd. Clearly, $k+q \ge n$ and $x+y=kd+qd=(k+q)d\in dT_n$. If $c\in Z^+$ where $c \neq 0$, then $ck \geq n$ and $cx = c(kd) = (ck)d \in T_n d$. Therefore, dT_n is an ideal in Z^+ . The proofs of (1) through (6) are straightforward and are omitted.

It will be shown that for any ideal I in Z^+ there exist $n \in Z^+$ and $d \in Z^+$ such that dT_n is contained in I. Consequently, the dT_n -ideal is the basic type of ideal in Z^+ and the study of ideals in Z^+ is reduced to the problem of finding a maximal dT_n -ideal for each ideal in Z^+ . It has already been observed in the previous theorem that $dT_n = T_n$ if d=1 and $dT_n = \{0\}$ if d=0. Consequently, it only remains to study the case for d>1. For this purpose, in the remainder of this paper it will be assumed that d>1 unless otherwise stated.

The following three lemmas are analogues of well known properties of ideals

Lemma 11. If $p \in Z^+$, $q \in Z^+$ and p divides q, then $qT_n \subset pT_n$.

PROOF. Suppose $a \in qT_n$. There exists $k \ge n$ such that a = kq. Since p divides q, there exists $t \ge 1$ such that q = tp. Consequently, $a = kq = k(tp) = (kt)p \in pT_n$, since $kt \ge n$, and it follows that $qT_n \subset pT_n$.

Lemma 12. If $dT_c \subset bT_a$ then b divides d.

PROOF. Suppose $dT_c \subset bT_a$. Since $cd \in bT_a$, there exists $p \ge a$ such that cd = pband b divides cd. By definition of dT_c , $(c+1)d \in bT_a$ and there exists $q \ge a$ such that (c+1)d=qb. Consequently, b divides (c+1)d=cd+d and in view of the fact that b divides cd, one has b divides d.

Lemma 13. If $bT_a \cap dT_c \neq \{0\}$, then there exist $p \in Z^+$ and $q \in Z^+$ such that $qT_p \subset bT_a \cap dT_c$.

PROOF. Suppose $x \in bT_a \cap dT_c$. It is clear that $xT_1 \subset bT_a$ and that $xT_1 \subset dT_c$, and the proof is complete.

The following two lemmas are essential to show that Z^+ is Noetherian on dT_n -ideals.

Lemma 14. Any ascending sequence $\{bT_{a_i}\}$ is finite.

PROOF. Suppose $\{tT_a\}$ is an ascending sequence of ideals in Z^+ . By Theorem 10, $\{a_i\}$ is a decreasing sequence of positive integers and is therefore finite; i.e., there exists $\alpha \in \mathbb{Z}^+$ such that $a_{\alpha} = a_n$ for each $n \ge \alpha$. Therefore, $bT_{a_{\alpha}} = bT_{a_n}$ for each $n \ge \alpha$.

Lemma 15. Any ascending sequence $\{b_iT_a\}$ is finite.

PROOF. Let $\{b_i T_a\}$ be an ascending sequence of ideals in Z^+ . In view of Lemma 12, b_i divides b for $i \in \{2, 3, 4, ...\}$. Since b is finite and not zero there can only be a finite number of distinct b_i 's. Hence, there is an $\alpha \in \mathbb{Z}^+$ such that $b_\alpha = b_n$ for each $n \ge \alpha$ and it follows that $b_{\alpha}T_a = b_nT_a$ for each $n \ge \alpha$.

Theorem 16. Z^+ satisfies the ascending chain condition on dT_n -ideals.

PROOF. Let $\{b_i T_{a_i}\}$ be an ascending chain of ideals in Z^+ . By Lemma 15, there exists $\alpha \in \mathbb{Z}^+$ such that $b_{\alpha} = b_i$ if $i \ge \alpha$. By Lemma 14, there exists $\beta \in \mathbb{Z}^+$ such that $a_{\beta} = a_j$ if $j \ge \beta$. If $k = \max \{\alpha, \beta\}$, then $b_k T_{a_k} = b_p T_{a_p}$ for $p \ge k$.

When $x \in \mathbb{Z}^+$, $y \in \mathbb{Z}^+$ and $d \in \mathbb{Z}^+$ where d > 1, denote by $S_d(x, y)$ the set $\{k \in \mathbb{Z}^+ | x \le k \le y \text{ and } k = md \text{ for some } m \in \{\mathbb{Z}^+\}.$

Lemma 17. $S_a(nd, 2nd)$ is a finite basis for dT_n .

PROOF. Let $p=qd \in dT_n$. If $p \in S_d(nd, 2nd)$ or p=a(nd) for some $a \in Z^+$, then p is generated by $S_d(nd, 2nd)$. Suppose $p \in S_d(nd, 2nd)$ and $p \neq a(nd)$ for $a \in Z^+$. Since p > 2nd and there exists k > 2 such that knd , it follows that there existsan s=td < nd such that knd+s=p. However, s < nd implies that nd+s=nd+dt=Therefore, p = knd + s = (k-1)nd + nd + s $= nd + td = (n+t)d \in S_d(nd, 2nd).$ $S_d(nd, 2nd)$ is a finite basis for dT_n .

Lemma 18. Let I be an ideal in Z^+ , $a \in I$ and d divide a, where d > 1. If there exists $m \in Z^+$ such that $S_d(ma, (m+1)a) \subset I$, then there exists $n \in Z^+$ such that $dT_n \subset I$.

PROOF. If d divides a, then there exists $b \in Z^+$ such that a=bd and it follows that $S_d(ma, (m+1)a) = S_d((mb)d, (md+b)d)$. Clearly, if p=qd, where $mb \le q \le (m+1)b$, then $p \in S_d(ma, (m+1)a) \subset I$. Suppose p=qd, where q > (m+1)b. It is clear that p > (m+1)a and there exists $k \ge 1$ such that $k(ma) \le p \le (k+1)ma$. Consequently, there exists $s \in Z^+$ such that s < ma and k(ma) + s = p. However, k(ma) + s = (kmb)d + s = p = qd and if follows that s = cd for some $c \in Z^+$. Moreover, ma + s < (m+1)a and it is easy to see that $ma + s = m(bd) + cd = (mb + c)d \in S_d(ma, (m+1)a) \subset I$. Therefore, $ma + s \in I$ and $(k-1)ma \in I$ together imply that $p = qd = k(ma) + s = (k-1)ma + (ma+s) \in I$. This shows that for each $q \ge mb$, $qd \in I$ and consequently, letting n = mb it is clear that $dT_n \subset I$.

Theorem 19. Let I be an ideal in Z^+ , $a \in I$. and $b \in I$. If a and b are relatively prime, then there exists $n \in Z^+$ such that $dT_n \subset I$, where d is the greatest common divisor of a and b.

PROOF. Since d is the greatest common divisor of a and b, b=pd for some $p \in Z^+$ and by Lemma 6, there exist positive integers s and t such that sa=tb+d or tb=sa+d. Since I is an ideal, it is clear that $sa \in I$ and $tb \in I$. Consequently, if sa=tb+d, a series of simple calculations show that the following elements belong to I:

Substituting b = pd in the last row one obtains

$$p^2td$$
, $(p^2t+1)d$, $(p^2t+2)d$, ..., $(p^2t+p)d$.

Since ptb+pd=pt+b=(ptb+1)b, the last row is $S_d(ptb,(pt+1)b)$ and Lemma 18 implies the existence of an $n \in \mathbb{Z}^+$ such that $dT_n \subset I$. On the other hand, if tb=sa+d a similar argument yields the same result.

The following theorem is needed for the characterization of M-ideals in Z^+ .

Theorem 20. If I is an M-ideal in Z^+ , then there exist $n \in Z^+$ and $d \in Z^+$ such that $dT_n \subset I$.

PROOF. If $a \in I$ and $b \in I$ where a and b are relatively prime, then Lemma 7 implies $T_k \subset I$ for some k, a contradiction to the fact that I is an M-ideal. Consequently, if $a \in I$ and $b \in I$, then their greatest common divisor, say d, is greater than 1, and the previous theorem gives the desired result.

The following theorem gives a structure and characterization of M-ideals in Z^+ and is necessary to show that Z^+ is Noetherian.

Theorem 21. An ideal I in Z^+ is an M-ideal if and only if I has a finite basis and $I=L\cup qT_p$, where q>1, qT_p is a maximal dT_n -ideal contained in I, and $L=\{t\in I|0< t< pq\}.$

PROOF. The above theorem guarantees the existence of n and d>1 such that $dT_n \subset I$, if I is an M-ideal. Let $S = \{d \in Z^+ | d \text{ is the greatest common divisor of some } a \in I \text{ and } b \in I\}$ and q be the least element in S. Theorem 19 assures that $W = \{n \in Z^+ | qT_n \subset I\}$ is a non-empty subset of Z^+ . Consequently, if p is the least element of W, then it is clear that $qT_p \subset I$. Suppose there exists $bT_a \subset I$ such that $qT_p \subset bT_a$. It follows from Theorem 12 that b divides q and consequently $b \subseteq q$. Since b is the greatest common divisor of ba and b(a+1) one has $b \in S$ and it follows that $q \subseteq b$. Consequently, b = q. By Theorem 10, $a \subseteq p$ and since $a \in W$ it follows that $p \subseteq a$. Consequently, p = a and $qT_p = bT_a$. Therefore qT_p is a maximal ideal in I. If $c \in I$, c > pq and k is the greatest common divisor of c and pq, then c = ka for some $a \in Z^+$, $k \in S$ and it can be shown that q divides k. Thus there exists $r \in Z^+$ such that k = rq. Consequently, pq < c = ka(rq)a = (ra)q and it follows that ra > p and $c \in qT_p$. If $L = \{t \in I | 0 < t < pq\}$ then it is clear that $I = L \cup qT_p$. In view of Lemma 17, $S_a(pq, 2pq)$ is a finite basis for I. The converse of the theorem is obvious.

Since any ideal in Z^+ is either a T-ideal or an M-ideal Theorems 9 and 21 give a classification and structure for all ideals in Z^+ . These results can now be used to obtain the following theorem.

Theorem 22. Z^+ is a Noetherian semiring.

PROOF. In view of Theorem 9 and Theorem 21, any ideal in Z^+ has a finite basis, and it follows that Z^+ is Noetherian (see Allen [1]).

Definition 23. An ideal I in a semiring R will be called almost principal if there exists a finite set $S \subset R$ such that $I \cup S = P$, where P is a principal ideal in R. The semiring R will be called an almost principal ideal semiring if every ideal in R is almost principal.

Theorem 24. Z^+ is an almost principal ideal semiring.

PROOF. Let I be an ideal in Z^+ . If I is a T-ideal, then by Theorem 9, $I = K \cup T_n$. Let $S = \{t \in Z^+ | t \notin I\}$. It is clear that S is a finite subset of Z^+ and $I \cup S = Z^+ = (1)$ is a principal ideal. If I is an M-ideal, then by Theorem 21, $I = L \cup dT_n$. Let $S = \{td | t \in Z^+ \text{ and } td \notin I\}$. It is clear that S is a finite subset of Z^+ and $I \cup S = (d)$ is a principal ideal. In either case I is an almost principal ideal and the result follows.

References

[1] P. J. Allen, Cohen's theorem for a class of Noetherian semirings, *Publ. Math. (Debrecen)* 17 (1970), 169—171.

[2] P. J. Allen, A fundamental theorem of homomorphisms for semirings, *Proc. Amer. Math. Soc.* 21 (1969), 412—416.

(Received October 16, 1973.)