Ideal theory in the semiring Z*

By PAUL J. ALLEN and LOUIS DALE (Alabama)

It is well known that the ring of integers Z is a principal ideal ring and that
Z is Noetherian. It is equally well known that the semiring (the definitions and
results appearing in ALLEN [1] and [2] will be used throughout this paper) of non-
negative integers Z* is not a principal ideal semiring. It is generally assumed without
question that Z* is Noetherian; however, a proof has not been presented in the
semiring literature, and prior to this paper, the ideals in Z have not been classified.
It will be shown that there is only one basic type of ideal in Z* and that all ideals
in Z* are related to this basic type in a natural way. Consequently, it will be an
easy matter to classify ideals in Z* and present a proof that Z* is a Noetherian
semiring. From these results, the discovery is made that Z* is an “almost principal™
ideal semiring

When n€Z*, the notation 7, will be used to denote {t¢Z*|r=n}lJ{0}. The
following are elementary facts concerning 7.

Theorem 1. If ncZ*, then T, is an ideal in Z* such that

l. To=T=2"%,

2. I 1=n=m, then T.CT, and T #T,,
3. T,UT, =T, where k=min {n, m},

4. T,NT,=T,, where g=max {n, m}, and
5. N{T}|i€eZ*}={0}.

PrROOF. Let @a€T, and beT,. Since a=n and b=n, it follows that a+b=2n=n.
Moreover, if k€Z*, where k+#0, then ka=kn=n. Therefore, a+beT, and kacT,
and it is clear that 7, is an ideal in Z*. The proofs of properties (1) through (5) are
straightforward and will be omitted.

When a€Z* and beZ™, the notation S(a, b) will be used to denote the set
{teZ*|a=t=b}.

Theorem 2. If n=1, then S(n, 2n) is a finite basis for T,.

PrROOF. Let peT,. If p€ S(n, 2n) or p=cn for some c£Z*, then p is generated
by S(n, 2n). Let p=2n and p==cn for any c€Z*. There exists a k=2 such that kn<
=p=(k+1)n. However, this guarantees the existence of an s—=n such that kn+s=p,
and it follows that n+s€ S(n, 2n). Therefore, p=kn+s=(k—1)n+n+s, where
n€ S(n, 2n) and (n+5)€ S(n, 2n), and it follows that S(n, 2n) is a basis for 7,,.
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Theorem 3. Z* satisfies the ascending chain condition on T,-ideals.

Proor. Let {7, } be an ascending chain of T,-ideals in Z*. It follows from
Theorem 1 that {n,} is a nonincreasing sequence of positive integers. Since any
nonincreasing sequence of positive integers is finite there exists u€Z* such that
n;=n, for each i=u. Therefore 7, =T, foreach i=pu and Z* satisfies the ascending
chain condition on 7,,-ideals.

The following lemmas will be essential in the characterization of all ideals in
Z*. They also give some methods by which one can determine if an ideal in Z*
contains a 7,-ideal.

Lemma 4, Let I be an ideal in Z*. If acl, meZ*, where m=0, and
S(ma, (m+1)a) 1, then there exists an n€ Z* such that T, 1.

PrROOF. Suppose pcZ*, p>(m+1)a and p=ca for c€Z*. Since there exists
k=m+1 such that ka<=p—<=(k+1)a, one has ka+s=p for some s<=a. Clearly s<a
implies that ma+s€ S(ma, (m+1)a)cI. Therefore, p=ka+s=(k—m)a+ma+secl.
Consequently, T,,,< I and the lemma follows.

Lemma 5. Let I be an ideal in Z*. If there exists an a< I such that a+1€1, then
there exists an n such that T,C 1.

Proor. If 7 is a T,-ideal, the lemma is obvious. Suppose [ is not a 7,-ideal
and a is the least element in / such that a+ 1€/. Since [ is an ideal, a series of simple
calculations show that the following elements belong to 7:

a, a+1
2a,2a+1, 2a+2

3a,3a+1, 3a+2,3a+3

..............................

aa,aa+1,aa+2,aa+3, ...,aa+a = ala+1).

The last row of elements is S(a* (a+1)a) and in view of Lemma 4, there exists an
n€Z* such that T,c 1.

Lemma 6. Let acZ* and be Z* where a==0 and b=0. If d is the greatest com-
mon divisor of a and b, then there exists s€¢Z* and t¢Z* such that sa=tb+d or
th=sa+d.

ProoF. From elementary number theory, it is well known that d=s"a+t'b
for some integers s” and ¢’. Since 0=d=a, 0=d=b and both @ and b are positive,
it follows that s"=0 and t"=0, or s"=0 and t'=0. If perchance s"=0 and t'=0,
then th=sa+d where 0=¢"=t and 0= —s"=s. On the other hand, if s"=0 and
t"=0, then sa=tb+d where 0=s"=s and 0= —t"=1, and the conclusions follows.

The above lemma is necessary for the following:

Lemma 7. Let I be an ideal in Z*, acI and b€ 1. If a and b are relatively prime,
then there exists an n such that T, 1.
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PrOOF. Since 1 is the greatest common divisor of @ and b, the above lemma
guarantees the existence of s€Z* and r€Z* such that sa=th+1 or th=sa+1. Since
I is an ideal it is clear that sac/ and rb€l. Consequently, sa+1€7 or th+1€7 and
the lemma follows from Lemma 5.

It is easy to see that for m=n, T,, and T, differ by at most a finite number of
elements. Since Z* =T, it follows that Z* differs from a 7)-ideal by at most a
finite number of elements. Consequently, if 7 is an ideal in Z* containing a 7, -ideal,
then 7,/ Z™ and it follows that Z* and 7 differ by at most a finite number of
elements. It will be shown that an ideal / in Z™ not containing a 7, -ideal differs
from the multiples of some positive integer d=1 by at most a finite number of ele-
ments. Consequently, if /is an ideal in Z* not containing a 7, -ideal, then there exist
meZ* and deZ*, where d=1, such that d7,,cIc(d).

In view of the above remarks, the ideals in Z* are classified according to the
following definition.

Definition 8. An ideal I in Z* will be called a T-ideal if T, I for some keZ™.
All other ideals in Z* will be called M-ideals.

It is clear that Z* is a T-ideal and {0} is an M-ideal. The following theorem
gives a characterization of 7-ideals in Z* and will be used to show that Z* is

Noetherian.

®  Theorem 9. An ideal I in Z* is a T-ideal if and only if I has a finite basis and
I=K\UT, where T, is the maximal T,-ideal contained in I and K= {tcl|0<t<k}.

PROOF. Suppose [ is a T-ideal and T,c /. Let S={ncZ*|T,cI}. It is clear
that S is a non-empty subset of Z* and by the Well-Ordering Principle, S contains
a least element, say k. By Theorem 1, 7, T} for each n€ S and it is clear that 7}
is the maximal 7),-ideal contained in /. Letting K= {tc/|0—<t<k} one has I=KUT,.
According to Theorem 2, S(k, 2k) is a finite basis for 7. Since K is a finite set,
S(k,2k) UK is a finite basis for /. The converse of the theorem is obvious.

Theorem 10. If ncZ* and de Z*, then dT, is an ideal in Z* such that

l. dTy=(d) and dT,=T, if and only if d=1,
2. dT,={0} if and only if d=0,

3. If m<k, then dT,cdT,,

4. dT,,\JdT,=dT,, where p=min {m, k},

5. dT,,NdT,=dT,, where q=max {m, k}, and
6. N{dT,|neZ+}={0}.

PrROOF. Suppose x€dT, and y€dT,. Then there exist k=n and g=n such that
x=kd and y=qd. Clearly, k+q=n and x+y=kd+qd=(k+q)decdT,. If cecZ*
where ¢#0, then ck =n and cx=c(kd)=(ck)dc T,d. Therefore, dT, is an ideal in Z*.
The proofs of (1) through (6) are straightforward and are omitted.

It will be shown that for any ideal 7 in Z* there exist n€Z* and d€Z™* such
that d7, is contained in /. Consequently, the d7,-ideal is the basic type of ideal
in Z* and the study of ideals in Z* is reduced to the problem of finding a maximal
dT,-ideal for each ideal in Z*. It has already been observed in the previous theorem
that d7,=T, if d=1 and dT,= {0} if d=0. Consequently, it only remains to study
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the case for d=1. For this purpose, in the remainder of this paper it will be assumed
that d=1 unless otherwise stated.

The following three lemmas are analogues of well known properties of ideals
in Z.

Lemma 11. If pcZ*, g€ Z* and p divides q, then qT,CpT,.

ProoF. Suppose a<¢T,. There exists k=n such that a=kgq. Since p divides ¢,
there exists 7=1 such that g=1p. Consequently, a=kg=k(tp)=(kt)pepT,, since
kt=n, and it follows that ¢7,CpT,.

Lemma 12, If dT.cbT, then b divides d.

PrOOF. Suppose d7,cbT,. Since cd<bT,, there exists p=a such that cd=pb
and b divides c¢d. By definition of dT,, (¢+1)debT, and there exists g=a such that
(c¢+1)d=gb. Consequently, b divides (¢+1)d=cd+d and in view of the fact that
b divides cd, one has b divides d.

Lemma 13. If bT,N\dT.={0}, then there exist pcZ* and q€Z* such that
qT,cbT,NdT..

PROOF. Suppose x€bT,dT.. It is clear that x7,CbT, and that x7,cdT,,
and the proof is complete.

The following two lemmas are essential to show that Z* is Noetherian on
dT,-ideals.

Lemma 14. Any ascending sequence {bT, } is finite.

PRrOOF. Suppose {£T, }is an ascendmg sequence of ideals in Z*. By Theorem 10,
{aJ} is a decreasing sequence of positive integers and is therefore finite; i.e., there
exists € Z* such that a,=a, for each n=a. Therefore, b7, =bT, for cach n=a.

Lemma 15. Any ascending sequence {b;T,)} is finite.

PrOOF. Let {b;T,} be an ascending sequence of ideals in Z*. In view of Lemma
12, b; divides b for i€ {2, 3,4, ...}. Since b is finite and not zero there can only be a
finite number of distinct b;’s. Hence, there is an 2€Z* such that b,=b, for each
n=q and it follows that b,7,=5,T, for each n=a.

Theorem 16. Z~ satisfies the ascending chain condition on dT,-ideals.

ProOF. Let {b;T,} be an ascending chain of ideals in Z*. By Lemma 15, there
exists € Z* such that b,=b; if i=a. By Lemma 14, there exists f€Z* such that
az=a; if j=p. If k=max {«, }, then b, T, =b,T, for p=k.

When x€Z*, yeZ* and deZ* where d:»l denote by S,(x,y) the set
{keZ*|x=k=y and k=md for some me{Z*)}.

Lemma 17. S,(nd, 2nd) is a finite basis for dT,.

PrOOF. Let p=qd€cdT,. If p€ Sy(nd, 2nd) or p=a(nd) for some acZ*, then
p is generated by S,(nd, 2nd). Suppose p¢ S,(nd, 2nd) and p#a(nd) for ac Z*. Since
p=2nd and there exists k =2 such that knd<=p-<(k+ 1)nd, it follows that there exists
an s=td-=nd such that knd+s=p. However, s<nd implies that nd+s=nd+dt=
=nd+td=(n+1)dc S;(nd, 2nd). Therefore, p=knd+s=(k—1)nd+nd+s and
Si(nd, 2nd) is a finite basis for dT,.
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Lemma 18, Let I be an ideal in Z*, acl and d divide a, where d=1. If there
exists me Z* such that Sy(ma, (m+1)a)1, then there exists n€ Z* such that dT,C 1.

Proor. If d divides a, then there exists b€ Z* such that a=bd and it follows
that S,(ma, (m+ 1)a)= S,((mb)d, (md+b)d). Clearly, if p=gd, where mb=q=
=(m+1)b, then p€ S;(ma, (m+1)a)cl. Suppose p=qd, where g=(m~+1)b. It is
clear that p=(m+1)a and there exists k=1 such that k(ma)=p=(k+1)ma. Con-
sequently, there exists s€ Z* such that s=ma and k(ma)+s=p. However, k(ma)+
+s=(kmb)d+s=p=qd and if follows that s=cd for some c€Z*. Moreover,
ma+s<(m+1)a and it is easy to see that ma+s=m(bd)+cd=(mb+c)de
€ Sy(ma, (m+1)a)cl. Therefore, ma+scl and (k—1)macl together imply that
p=qgd=k(ma)+s=(k—1)yma+(ma+s)cl. This shows that for each g=mb, gdcl
and consequently, letting n=mb it is clear that d7,cI.

Theorem 19. Let I be an ideal in Z*+, acl. and bel. If a and b are relatively
prime, then there exists n€ Z™ such that dT, < I, where d is the greatest common divisor
of a and b.

PROOF. Since 4 is the greatest common divisor of @ and b, b=pd for some
pcZ* and by Lemma 6, there exist positive integers s and ¢ such that sa=rtb+d
or th=sa+d. Since I is an ideal, it is clear that sacl and th€l. Consequently, if
sa=th+d, a series of simple calculations show that the following elements belong
to I:

bt, bt+d,
2bt, 2bt +d, 2bt + 2d,

3bt, 3bt +d, 3bt +2d, 3bt+3d

ptb, ptb+-d, ptb+2d, ptb+3d, ..., ptb+pd.

Substituting b= pd in the last row one obtains

pid, (p*t+1)d, (p*t+2)d, ..., (p*t+p)d.

Since ptb+ pd=pt+b=(ptb+1)b, the last row is S,(prb, (pt+1)b) and Lemma
18 implies the existence of an n€ Z* such that d7, 1. On the other hand, if th=sa+d
a similar argument yields the same result.

The following theorem is needed for the characterization of M-ideals in Z*.

Theorem 20. If I is an M-ideal in Z*, then there exist n€Z* and d€Z* such
that dT,C 1.

Proor. If @€l and b€l where a and b are relatively prime, then Lemma 7
implies T, < I for some k, a contradiction to the fact that /is an M-ideal. Consequently,
if @€l and b€, then their greatest common divisor, say d, is greater than 1, and
the previous theorem gives the desired result.

The following theorem gives a structure and characterization of M-ideals in
Z* and is necessary to show that Z* is Noetherian.
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Theorem 21. An ideal 7/ in Z* is an M-ideal if and only if 7 has a finite basis
and /=LUgqT,, where g=1, g7, is a maximal d7,-ideal contained in 7, and
L={tel|0=t<pq)}.

Proor. The above theorem guarantees the existence of » and d=1 such that
dT,c1, if I is an M-ideal. Let S={d<Z*|d is the greatest common divisor of some
acl and bel} and g be the least element in S. Theorem 19 assures that
W={neZ*qT,c1I} is a non-empty subset of Z*. Consequently, if p is the least
element of W, then it is clear that ¢7,cC /. Suppose there exists b7, =7 such that
qT,cbT,. It follows from Theorem 12 that 5 divides ¢ and consequently b=gq.
Since b is the greatest common divisor of ba and b(a+1) one has b¢ S and it fol-
lows that ¢=5b. Consequently, b=¢g. By Theorem 10, a=p and since a€ W it fol-
lows that p=a. Consequently, p=a and ¢7,=bT,. Therefore ¢7, is a maximal
ideal in 1. If ¢€1, c=pq and k is the greatest common divisor of ¢ and pg, then c=ka
for some @€ Z*, k¢ S and it can be shown that ¢ divides k. Thus there exists rcZ+
such that k=rq. Consequently, pg<=c=ka(rq)a=(ra)q and it follows that ra=p
and c€qT,. If L={tc1|0<=t<=pgq} then it is clear that /=L\J ¢T,. In view of Lemma
17, S,(pq, 2pq) is a finite basis for 1. The converse of the theorem is obvious.

Since any ideal in Z* is either a 7-ideal or an M-ideal Theorems 9 and 21 give
a classification and structure for all ideals in Z*. These results can now be used to
obtain the following theorem.

Theorem 22. Z* is a Noetherian semiring.

PROOF. In view of Theorem 9 and Theorem 21, any ideal in Z* has a finite
basis, and it follows that Z* is Noetherian (see Allen [1]).

Definition 23. An ideal 7 in a semiring R will be called almost principal if there
exists a finite set SR such that /U S=P, where P is a principal ideal in R. The
semiring R will be called an almost principal ideal semiring if every ideal in R is
almost principal.

Theorem 24. Z* is an almost principal ideal semiring.

ProoF. Let / be an ideal in Z*. If I is a T-ideal, then by Theorem 9, I=KUT,.
Let S={tcZ*|t4I}. It is clear that S is a finite subset of Z* and IUS=2Z%=(1)
is a principal ideal. If 7 is an M-ideal, then by Theorem 21, /=LUdT,. Let
S={td|tcZ* and td¢ I}. It is clear that S is a finite subset of Z* and /U S=(d)
is a principal ideal. In either case 7 is an almost principal ideal and the result follows.
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